Birds track their Grinnellian niche through a century of climate change.

نویسندگان

  • Morgan W Tingley
  • William B Monahan
  • Steven R Beissinger
  • Craig Moritz
چکیده

In the face of environmental change, species can evolve new physiological tolerances to cope with altered climatic conditions or move spatially to maintain existing physiological associations with particular climates that define each species' climatic niche. When environmental change occurs over short temporal and large spatial scales, vagile species are expected to move geographically by tracking their climatic niches through time. Here, we test for evidence of niche tracking in bird species of the Sierra Nevada mountains of California, focusing on 53 species resurveyed nearly a century apart at 82 sites on four elevational transects. Changes in climate and bird distributions resulted in focal species shifting their average climatological range over time. By comparing the directions of these shifts relative to the centroids of species' range-wide climatic niches, we found that 48 species (90.6%) tracked their climatic niche. Analysis of niche sensitivity on an independent set of occurrence data significantly predicted the temperature and precipitation gradients tracked by species. Furthermore, in 50 species (94.3%), site-specific occupancy models showed that the position of each site relative to the climatic niche centroid explained colonization and extinction probabilities better than a null model with constant probabilities. Combined, our results indicate that the factors limiting a bird species' range in the Sierra Nevada in the early 20th century also tended to drive changes in distribution over time, suggesting that climatic models derived from niche theory might be used successfully to forecast where and how to conserve species in the face of climate change.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the potential of translocating vulnerable forest birds by searching for novel and enduring climatic ranges

Hawaiian forest birds are imperiled, with fewer than half the original >40 species remaining extant. Recent studies document ongoing rapid population decline and project complete climate-based range losses for the critically endangered Kaua'i endemics 'akeke'e (Loxops caeruleirostris) and 'akikiki (Oreomystis bairdi) by end-of-century due to projected warming. Climate change facilitates the upw...

متن کامل

Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts.

Species respond to climate change in two dominant ways: range shifts in latitude or elevation and phenological shifts of life-history events. Range shifts are widely viewed as the principal mechanism for thermal niche tracking, and phenological shifts in birds and other consumers are widely understood as the principal mechanism for tracking temporal peaks in biotic resources. However, phenologi...

متن کامل

Resource tracking within and across continents in long-distance bird migrants

Migratory birds track seasonal resources across and between continents. We propose a general strategy of tracking the broad seasonal abundance of resources throughout the annual cycle in the longest-distance migrating land birds as an alternative to tracking a certain climatic niche or shorter-term resource surplus occurring, for example, during spring foliation. Whether and how this is possibl...

متن کامل

Decoupled conservatism of Grinnellian and Eltonian niches in an invasive arthropod

Whether a species niche is conserved or shifts across space and time is a question of heightened interest in ecology and evolution. Considerable scientific inquiry into this topic has used invasive species to evaluate conservatism of the Grinnellian climatic niche while generally neglecting the Eltonian functional niche. By contrast, we report here on the first simultaneous reciprocal compariso...

متن کامل

Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change

Species are largely predicted to shift poleward as global temperatures increase, with this fingerprint of climate change being already observed across a range of taxonomic groups and, mostly temperate, geographic locations1–5. However, the assumption of uni-directional distribution shifts does not account for complex interactions among temperature, precipitation and species-specific tolerances6...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 106 Suppl 2  شماره 

صفحات  -

تاریخ انتشار 2009