Activation-independent platelet adhesion and aggregation under elevated shear stress.

نویسندگان

  • Zaverio M Ruggeri
  • Jennifer N Orje
  • Rolf Habermann
  • Augusto B Federici
  • Armin J Reininger
چکیده

Platelet aggregation, which contributes to bleeding arrest and also to thrombovascular disorders, is thought to initiate after signaling-induced activation. We found that this paradigm does not apply under blood flow conditions comparable to those existing in stenotic coronary arteries. Platelets interacting with immobilized von Willebrand factor (VWF) aggregate independently of activation when soluble VWF is present and the shear rate exceeds 10 000 s(-1) (shear stress = 400 dyn/cm(2)). Above this threshold, active A1 domains become exposed in soluble VWF multimers and can bind to glycoprotein Ibalpha, promoting additional platelet recruitment. Aggregates thus formed are unstable until the shear rate approaches 20 000 s(-1) (shear stress = 800 dyn/cm.(2)). Above this threshold, adherent platelets at the interface of surface-immobilized and membrane-bound VWF are stretched into elongated structures and become the core of aggregates that can persist on the surface for minutes. When isolated dimeric A1 domain is present instead of native VWF multimers, activation-independent platelet aggregation occurs without requiring shear stress above a threshold level, but aggregates never become firmly attached to the surface and progressively disaggregate as shear rate exceeds 6000 s(-1). Platelet and VWF modulation by hydrodynamic force is a mechanism for activation-independent aggregation that may support thrombotic arterial occlusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Activation-independent platelet adhesion and aggregation under elevated shear stress

Platelet aggregation, which contributes to bleeding arrest and also to thrombovascular disorders, is thought to initiate after signaling-induced activation. We found that this paradigm does not apply under blood flow conditions comparable to those existing in stenotic coronary arteries. Platelets interacting with immobilized von Willebrand factor (VWF) aggregate independently of activation when...

متن کامل

Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension.

The binding of plasma von Willebrand factor (VWF) to platelet receptor GpIb under high hydrodynamic shear leads to platelet activation and subsequent shear-induced platelet aggregation (SIPA). We quantitatively examined the aspects of fluid flow that regulate platelet activation by subjecting human blood and isolated platelets to well-defined shear conditions in a cone-plate viscometer. We made...

متن کامل

Localization of the Adhesion Receptor Glycoprotein Ib-IX-V Complex to Lipid Rafts Is Required for Platelet Adhesion and Activation

The platelet glycoprotein (GP) Ib-IX-V complex mediates the attachment of platelets to the blood vessel wall by binding von Willebrand factor (VWF), an interaction that also transmits signals for platelet activation and aggregation. Because the complex is extensively palmitoylated, a modification known to target proteins to lipid rafts, we investigated the role of raft localization in GP Ib-IX-...

متن کامل

Protein kinase C is activated in platelets subjected to pathological shear stress.

High levels of fluid shear stress at the blood vessel wall directly stimulate von Willebrand factor (vWF)-mediated platelet adhesion and aggregation and thereby contribute to the pathogenesis of arterial thrombosis. We have found that a pathological level of arterial wall shear stress (90 dynes/cm2) induces platelet aggregation that is associated with the phosphorylation of pleckstrin, a M(r) 4...

متن کامل

Distinct roles of ADP receptors in von Willebrand factor-mediated platelet signaling and activation under high flow.

We have investigated the role of adenosine diphosphate (ADP) receptors in the adhesion, activation, and aggregation of platelets perfused over immobilized von Willebrand factor (VWF) under high shear stress. Blocking P2Y(1) prevented stable platelet adhesion and aggregation, indicative of a complete inhibition of alpha(IIb)beta(3) activation, and decreased the duration of transient arrests from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 108 6  شماره 

صفحات  -

تاریخ انتشار 2006