Identification of candidate substrates of ubiquitin-specific protease 13 using 2D-DIGE

نویسندگان

  • Jianmin Wang
  • Yingli Liu
  • Lijuan Tang
  • Sufen Qi
  • Yingjun Mi
  • Dianwu Liu
  • Qingbao Tian
چکیده

The present study aimed to identify candidate substrates of ubiquitin-specific protease (USP)13 using two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). USP13 is a well-characterized member of the USP family, which regulates diverse cellular functions by cleaving ubiquitin from ubiquitinated protein substrates. However, existing studies indicate that USP13 has no detectable hydrolytic activity in vitro. This finding implies that USP13 likely has different substrate specificity. In this study, a USP cleavage assay was performed using two different types of model substrates (glutathione S-transferase-Ub52 and ubiquitin-β-galactosidase) to detect the deubiquitinating enzyme (DUB) activity of USP13. In addition, a proteomic approach was taken by using 2D-DIGE to detect cellular proteins whose expressoin is significantly altered in 293T cell lines following the overexpression of USP13 or its C345S mutant (the catalytically inactive form). The data indicated that USP13 still has no detectable DUB activity in vitro nor does C345S. The results of 2D-DIGE demonstrated that the expression of several proteins increased or decreased significantly in 293T cells following the overexpression of USP13. Mass spec-troscopy analysis of gel spots identified 7 proteins, including 4 proteins with an increased expression, namely vinculin, thimet oligopeptidase, cleavage and polyadenylation specific factor 3, and methylosome protein 50, and 3 proteins with a decreased expression, namely adenylosuccinate synthetase, annexin and phosphoglycerate mutase. In addition, in the samples of 293T cell lines after the overexpression of USP13 and USP13 C345S, vinculin exhibited an increased expression, suggesting that it may be a candidate substrate of USP13. However, sufficient follow-up validation studies are required in order to determine whether vinculin protein directly interacts with USP13.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The E3 ubiquitin ligase TRIM32 regulates myoblast proliferation by controlling turnover of NDRG2.

Limb girdle muscular dystrophy 2H is caused by mutations in the gene encoding the E3 ubiquitin ligase, TRIM32. Previously, we generated and characterized a Trim32 knockout mouse (T32KO) that displays both neurogenic and myopathic features. The myopathy in these mice is attributable to impaired muscle growth, associated with satellite cell senescence and premature sarcopenia. This satellite cell...

متن کامل

A new class of SUMO proteases.

The small ubiquitin-related modifier (SUMO) is a ubiquitin-like (UBL) protein that can be conjugated to hundreds of different proteins. Such ‘sumoylation’—which is highly dynamic— alters the stability, localization or functional properties of the modified substrate, most often by altering its interactions with other proteins [1,2]. Enzymes known to remove SUMO from substrates, the SUMO protease...

متن کامل

2D differential in-gel electrophoresis for the identification of esophageal scans cell cancer-specific protein markers.

The reproducibility of conventional two-dimensional (2D) gel electrophoresis can be improved using differential in-gel electrophoresis (DIGE), a new emerging technology for proteomic analysis. In DIGE, two pools of proteins are labeled with 1-(5-carboxypentyl)-1'-propylindocarbocyanine halide (Cy3) N-hydroxy-succinimidyl ester and 1-(5-carboxypentyl)-1'-methylindodi-carbocyanine halide (Cy5) N-...

متن کامل

Bioinformatic Approaches for Predicting substrates of Proteases

Proteases have central roles in "life and death" processes due to their important ability to catalytically hydrolyze protein substrates, usually altering the function and/or activity of the target in the process. Knowledge of the substrate specificity of a protease should, in theory, dramatically improve the ability to predict target protein substrates. However, experimental identification and ...

متن کامل

A comprehensive method for detecting ubiquitinated substrates using TR-TUBE.

The identification of substrates for ubiquitin ligases has remained challenging, because most substrates are either immediately degraded by the proteasome or processed by deubiquitinating enzymes (DUBs) to remove polyubiquitin. Although a methodology that enables detection of ubiquitinated proteins using ubiquitin Lys-ε-Gly-Gly (diGly) remnant antibodies and MS has been developed, it is still i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2017