Foliations and Chern-Heinz inequalities

نویسندگان

  • J. L. M. BARBOSA
  • G. P. BESSA
  • J. F. MONTENEGRO
چکیده

We extend the Chern-Heinz inequalities about mean curvature and scalar curvature of graphs of C2-functions to leaves of transversally oriented codimension one C2-foliations of Riemannian manifolds. That extends partially Salavessa’s work on mean curvature of graphs and generalize results of Barbosa-Kenmotsu-Oshikiri [3] and Barbosa-GomesSilveira [2] about foliations of 3-dimensional Riemannian manifolds by constant mean curvature surfaces. These Chern-Heinz inequalities for foliations can be applied to prove Haymann-Makai-Osserman inequality (lower bounds of the fundamental tones of bounded open subsets Ω ⊂ R2 in terms of its inradius) for embedded tubular neighborhoods of simple curves of Rn. Mathematics Subject Classification (2000): 58C40, 53C42

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

J an 2 00 6 On Chern - Heinz inequalities

We extend the Chern-Heinz inequalities to graphs of C 2-functions defined on open subsets of Riemannian manifolds. We generalize results about foliations of 3-dimensional Riemannian manifolds by constant mean curvature surfaces due to Barbosa-Kenmotsu-Oshikiri [3], Barbosa-Gomes-Silveira [2].

متن کامل

On the k-nullity foliations in Finsler geometry

Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...

متن کامل

Miyaoka-yau Type Inequalities for Kähler-einstein Manifolds

We investigate Chern number inequalities on Kähler-Einstein manifolds and their relation to uniformization. For Kähler-Einstein manifolds with c1 > 0, we prove certain Chern number inequalities in the toric case. For Kähler-Einstein manifolds with c1 < 0, we propose a series of Chern number inequalities, interpolating Yau’s and Miyaoka’s inequalities.

متن کامل

Eigenvalues of the transversal Dirac operator on Kahler foliations

In this paper, we prove Kirchberg-type inequalities for any Kähler spin foliation. Their limiting-cases are then characterized as being transversal minimal Einstein foliations. The key point is to introduce the transversal Kählerian twistor operators.

متن کامل

Foliations with vanishing Chern classes

In this paper we aim at the description of foliations having tangent sheaf TF with c1(TF) = c2(TF) = 0 on non-uniruled projective manifolds. We prove that the universal covering of the ambient manifold splits as a product, and that the Zariski closure of a general leaf of F is an Abelian variety. It turns out that the analytic type of the Zariski closures of leaves may vary from leaf to leaf. W...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006