The Drosophila fork head factor directly controls larval salivary gland-specific expression of the glue protein gene Sgs3.

نویسندگان

  • V Mach
  • K Ohno
  • H Kokubo
  • Y Suzuki
چکیده

The Drosophila Fork head protein participates in salivary gland formation, since salivary glands are missing in fork head embryos. Here we show that the fork head encoded protein binds to an upstream regulatory region of the larval salivary gland glue protein gene Sgs3. Mobility shift assay in the presence of an anti-Fork head antibody demonstrated that the Fork head factor interacts with the TGTTTGC box shown to be involved in tissue-specific Sgs3 expression. Experiments employing a set of oligonucleotide competitors revealed that Fork head binding was prevented by the same single base substitutions that were previously shown to interfere with the TGTTTGC element function in vivo. Furthermore, the anti-Fork head antibody bound to >60 sites of polytene chromosomes, including the puffs of all Sgs genes and Fork head protein was detected in the nuclei of salivary glands of larvae of all examined stages. These data provide experimental evidence for the hypothesis that the protein encoded by the fork head gene is required initially for salivary gland formation and is utilized subsequently in the control of larval genes specifically expressed in this organ.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GSK3β and CREB3 Gene Expression Profiling in Benign and Malignant Salivary Gland Tumors

Background: Salivary gland tumors (SGT) are rare lesions with uncertain histopathology. One of the major signaling pathways that participate in the development of several tumors is protein kinase A. In this pathway, glycogen synthase kinase β (GSK3β) and cAMP responsive element binding protein (CREB3) are two genes which are supposed to be down regulated in most human tumors. The expression lev...

متن کامل

Genome-Wide Analysis Reveals a Major Role in Cell Fate Maintenance and an Unexpected Role in Endoreduplication for the Drosophila FoxA Gene Fork Head

Transcription factors drive organogenesis, from the initiation of cell fate decisions to the maintenance and implementation of these decisions. The Drosophila embryonic salivary gland provides an excellent platform for unraveling the underlying transcriptional networks of organ development because Drosophila is relatively unencumbered by significant genetic redundancy. The highly conserved FoxA...

متن کامل

Steroid regulated programmed cell death during Drosophila metamorphosis.

During insect metamorphosis, pulses of the steroid hormone 20-hydroxyecdysone (ecdysone) direct the destruction of obsolete larval tissues and their replacement by tissues and structures that form the adult fly. We show here that larval midgut and salivary gland histolysis are stage-specific steroid-triggered programmed cell death responses. Dying larval midgut and salivary gland cell nuclei be...

متن کامل

senseless is necessary for the survival of embryonic salivary glands in Drosophila.

Apoptosis in developing Drosophila embryos is rare and confined to specific groups of cells. We explain how one organ, salivary glands, of Drosophila embryos avoids apoptosis. senseless (sens), a Zn-finger transcription factor, is expressed in the salivary primordium and later in the differentiated salivary glands. The regulation of sens expression in the salivary placodes is more complex than ...

متن کامل

A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis.

The steroid hormone ecdysone signals the stage-specific programmed cell death of the larval salivary glands during Drosophila metamorphosis. This response is preceded by an ecdysone-triggered switch in gene expression in which the diap2 death inhibitor is repressed and the reaper (rpr) and head involution defective (hid) death activators are induced. Here we show that rpr is induced directly by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 24 12  شماره 

صفحات  -

تاریخ انتشار 1996