Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources
نویسندگان
چکیده
Despite the mammalian host actively sequestering iron to limit pathogenicity, heme (or hemin when oxidized) and hemoproteins serve as important sources of iron for many bloodborne pathogens. The HmuRSTUV hemin uptake system allows Yersinia species to uptake and utilize hemin and hemoproteins as iron sources. HmuR is a TonB-dependent outer membrane receptor for hemin and hemoproteins. HmuTUV comprise a inner membrane ABC transporter that transports hemin and hemoproteins from the periplasmic space into the bacterial cytoplasm, where it is degraded by HmuS. Here we show that hmuSTUV but not hmuR are expressed under iron replete conditions, whereas hmuR as well as hmuSTUV are expressed under iron limiting conditions, suggesting complex transcriptional control. Indeed, expression of hmuSTUV in the presence of inorganic iron, but not in the presence of hemin, requires the global regulator IscR acting from a promoter in the intergenic region between hmuR and hmuS. This effect of IscR appears to be direct by binding a site mapped by DNaseI footprinting. In contrast, expression of hmuR under iron limiting conditions requires derepression of the ferric uptake regulator Fur acting from the hmuR promoter, as Fur binding upstream of hmuR was demonstrated biochemically. Differential expression by both Fur and IscR would facilitate maximal hemin uptake and utilization when iron and heme availability is low while maintaining the capacity for periplasmic removal and cytosolic detoxification of heme under a wider variety of conditions. We also demonstrate that a Y. pseudotuberculosis ΔiscR mutant has a survival defect when incubated in whole blood, in which iron is sequestered by heme-containing proteins. Surprisingly, this phenotype was independent of the Hmu system, the type III secretion system, complement, and the ability of Yersinia to replicate intracellularly. These results suggest that IscR regulates multiple virulence factors important for Yersinia survival and growth in mammalian tissues and reveal a surprising complexity of heme uptake expression and function under differing conditions of iron.
منابع مشابه
Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization.
Sequence analysis of the hemin uptake locus (hmu) of Yersinia pestis revealed five genes, hmuRSTUV, required for use of hemin and hemoproteins as iron sources. The translated gene products have homologies with proteins of the hemin transport genes of several gram-negative bacteria. Promoters were identified upstream of hmuP'R (p1) and upstream of hmuS (p2); p1, which contains a Fur box, is regu...
متن کاملYersinia pestis TonB: role in iron, heme, and hemoprotein utilization.
In Yersinia pestis, the siderophore-dependent yersiniabactin (Ybt) iron transport system and heme transport system (Hmu) have putative TonB-dependent outer membrane receptors. Here we demonstrate that hemin uptake and iron utilization from Ybt are TonB dependent. However, the Yfe iron and manganese transport system does not require TonB.
متن کاملIdentification and characterization of the hemophore-dependent heme acquisition system of Yersinia pestis.
Yersinia pestis possesses a heme-protein acquisition system (Hmu) that allows it to utilize heme and heme-protein complexes as the sole sources of iron. Analysis of the Y. pestis CO92 genomic sequence revealed a second heme-protein acquisition gene cluster that shares homology with the hemophore-dependent heme acquisition system (Has system) of Serratia marcescens. This locus consisted of the h...
متن کاملHunger for iron: the alternative siderophore iron scavenging systems in highly virulent Yersinia
Low molecular weight siderophores are used by many living organisms to scavenge scarcely available ferric iron. Presence of at least a single siderophore-based iron acquisition system is usually acknowledged as a virulence-associated trait and a pre-requisite to become an efficient and successful pathogen. Currently, it is assumed that yersiniabactin (Ybt) is the solely functional endogenous si...
متن کاملHmuT in the Heme Uptake Pathway of Corynebacterium diphtheriae: stability and function
Strategies to use heme as a source of iron are key to the survival and virulence of many bacteria; inhibition of iron uptake pathways may be a new strategy to prevent bacterial infection. Corynebacterium diphtheriae is a Gram-positive, pathogenic bacterium that is the causative agent of diphtheria It utilizes proteins in heme uptake pathways to obtain required iron for survival and virulence. O...
متن کامل