Effects of dilution on the extinction characteristics of strained lean premixed flames assisted by catalytic reaction

نویسندگان

  • Jingjing Li
  • Hong G. Im
چکیده

As a fundamental study relevant to micro-combustor application, the effects of mixture dilution on the lean extinction characteristics is studied for a stagnation-point flow system with a methane/air mixture over a platinum surface. For steady conditions, the level of flammability extension by surface reaction depends strongly on the mixture dilution, such that the benefit of catalyst-assisted lean combustion can be fully realized only with a diluted system. As for the effects of surface heat loss, while it lowers the overall flammability of the system, it was found that the level of flammability extension by surface reactions is rather insensitive to the surface thermal conditions. These observations are explained by consideration of characteristic time scales calculated from the fuel consumption rate. The extinction response to oscillatory strain rate also shows consistent behavior. Unsteady extinction behavior in response to equivalence ratio fluctuations showed an expected trend overall. It is also found that the benefit of flammability extension by catalytic reaction can become greater as the level of unsteadiness increases. 2006 Published by Elsevier Inc. on behalf of The Combustion Institute.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extinction Limits of Premixed Combustion Assisted by Catalytic Reaction in a Stagnation-Point Flow

Motivated by the potential use of catalytic materials in micro-combustor application, the primary scope of this study is to investigate the lean extinction characteristics of premixed flames in the presence of catalytic reaction. In particular, the effects of mixture dilution on the lean flammability limit are examined by adopting a stagnation-point flow system with a methane/air mixture over a...

متن کامل

Effects of platinum stagnation surface on the lean extinction limits of premixed methane/air flames at moderate surface temperatures

0010-2180/$ see front matter 2010 The Combust doi:10.1016/j.combustflame.2010.08.002 ⇑ Corresponding author. Fax: +1 734 647 3170. E-mail address: [email protected] (J.T. Wiswall A stagnation flow reactor was used to study the effects of platinum on the lean flammability limits of atmospheric pressure premixed methane/air flames at moderate stagnation surface temperatures. Experimental and com...

متن کامل

Effects of Combustible Dust Clouds on the Extinction Behavior of Strained, Laminar Premixed Flames in Normal Gravity

An experimental and numerical study was performed on the interaction of combustible solid particles with atmospheric, strained, laminar premixed methane/air and propane/air flames in normal gravity. The study was conducted in the opposed-jet configuration in which a single flame was stabilized below the gas stagnation plane by counterflowing a mixture against an air jet. Into the flame were see...

متن کامل

Effect of Hydrogen Addition on the Flammability Limit of Stretched Methane/Air Premixed Flames

A computational study is performed to investigate the effects of hydrogen addition on the fundamental characteristics of stretched methane/air premixed flame in an opposed flow configuration. The problem is of interest as a potential application to gas turbines and spark-ignition engines, where it has been anticipated that addition of a small amount of hydrogen will extend the lean flammability...

متن کامل

Dynamic Response of Strained Premixed Flames to Equivalence Ratio Gradients

Premixed flames encounter gradients of mixture equivalence ratio in stratified charge engines, lean premixed gas-turbine engines, and a variety of other applications. In cases for which the scales—spatial or temporal—of fuel concentration gradients in the reactants are comparable to flame scales, changes in burning rate, flammability limits, and flame structure have been observed. This paper us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006