MyoD is required for myogenic stem cell function in adult skeletal muscle.

نویسندگان

  • L A Megeney
  • B Kablar
  • K Garrett
  • J E Anderson
  • M A Rudnicki
چکیده

To investigate the function of MyoD in adult skeletal muscle, we interbred MyoD mutant mice with mdx mice, a model for Duchenne and Becker muscular dystrophy. Mice lacking both MyoD and dystrophin displayed a marked increase in severity of myopathy leading to premature death, suggesting a role for MyoD in muscle regeneration. Examination of MyoD mutant muscle revealed elevated numbers of myogenic cells; however, myoblasts derived from these cells displayed normal differentiation potential in vitro. Following injury, MyoD mutant muscle was severely deficient in regenerative ability, and we observed a striking reduction in the in vivo proliferation of myogenic cells during regeneration. Therefore, we propose that the failure of MyoD-deficient muscle to regenerate efficiently is not caused by a reduction in numbers of satellite cells, the stem cells of adult skeletal muscle, but results from an increased propensity for stem-cell self-renewal rather than progression through the myogenic program.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hedgehog Signaling Regulates MyoD Expression and Activity*

The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by...

متن کامل

Inhibition of Atrogin-1/MAFbx Mediated MyoD Proteolysis Prevents Skeletal Muscle Atrophy In Vivo

Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that M...

متن کامل

Effect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell

Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...

متن کامل

Effect of Dexamethasone, Insulin and EGF on the Myogenic Potential on Human Endometrial Stem Cell

Human endometrium contains mesenchymal stem cells (eMSC) which have the ability to differentiate into three cell lineages and the potential in therapeutic applications. We hypothesize that using environmental induction in culture media such as dexamethasone, human recombinant insulin and human epidermal growth factor (hEGF) can differentiate endometrial stem cells into myoblast. These agents ha...

متن کامل

Planarian Body-Wall Muscle: Regeneration and Function beyond a Simple Skeletal Support

The body-wall musculature of adult planarians consists of intricately organized muscle fibers, which after amputation are regenerated rapidly and with great precision through the proliferation and differentiation of pluripotent stem cells. These traits make the planarian body-wall musculature a potentially useful model for the study of cell proliferation, differentiation, and pattern formation....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genes & development

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 1996