Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2, and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis

نویسندگان

  • Matthew S. Faber
  • Mark A. Lukowski
  • Qi Ding
  • Nicholas S. Kaiser
  • Song Jin
چکیده

Many materials have been explored as potential hydrogen evolution reaction (HER) electrocatalysts to generate clean hydrogen fuel via water electrolysis, but none so far compete with the highly efficient and stable (but cost prohibitive) noble metals. Similarly, noble metals often excel as electrocatalytic counter electrode materials in regenerative liquid-junction photoelectrochemical solar cells, such as quantum dot-sensitized solar cells (QDSSCs) that employ the sulfide/polysulfide redox electrolyte as the hole mediator. Here, we systematically investigate thin films of the earth-abundant pyrite-phase transition metal disulfides (FeS2, CoS2, NiS2, and their alloys) as promising alternative electrocatalysts for both the HER and polysulfide reduction. Their electrocatalytic activity toward the HER is correlated to their composition and morphology. The emergent trends in their performance suggest that cobalt plays an important role in facilitating the HER, with CoS2 exhibiting highest overall performance. Additionally, we demonstrate the high activity of the transition metal pyrites toward polysulfide reduction and highlight the particularly high intrinsic activity of NiS2, which could enable improved QDSSC performance. Furthermore, structural disorder introduced by alloying different transition metal pyrites could increase their areal density of active sites for catalysis, leading to enhanced performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient hydrogen evolution catalysis using ternary pyrite-type cobalt phosphosulphide.

The scalable and sustainable production of hydrogen fuel through water splitting demands efficient and robust Earth-abundant catalysts for the hydrogen evolution reaction (HER). Building on promising metal compounds with high HER catalytic activity, such as pyrite structure cobalt disulphide (CoS2), and substituting non-metal elements to tune the hydrogen adsorption free energy could lead to fu...

متن کامل

Computational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution

Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...

متن کامل

PERFORMANCE OF AB, ALLOYS FOR HYDROGEN STORAGE AND HYDRIDE ELECTRODES

Two types of hydride electxodes are potential candidates to replace the Cd elecsode in NilCd batteries, One is of the A type where A is a rare earth metal or mixture thereof, and B is the transition metal. The other is commonly referred to as A type. A , type alloys with partial substitution of the B element in A type hydride material (Ovonic) with Co, Mn, Al, and Fe were studied (A compo...

متن کامل

Activating earth-abundant electrocatalysts for efficient, low-cost hydrogen evolution/oxidation: sub-monolayer platinum coatings on titanium tungsten carbide nanoparticles

Most earth-abundant electrocatalysts suffer from negligible activity for the hydrogen oxidation reaction (HOR) and significant overpotentials for the hydrogen evolution reaction (HER) in acidic media. We designed earth-abundant, carbon-supported titanium tungsten carbide (TixW1 xC) nanoparticles decorated with surface Pt coatings ranging from the ‘‘single-atom’’ to the two-monolayer regime. Rea...

متن کامل

Enhanced catalytic activity in strained chemically exfoliated WS₂ nanosheets for hydrogen evolution.

Efficient evolution of hydrogen through electrocatalysis at low overpotentials holds tremendous promise for clean energy. Hydrogen evolution can be easily achieved by electrolysis at large potentials that can be lowered with expensive platinum-based catalysts. Replacement of Pt with inexpensive, earth-abundant electrocatalysts would be significantly beneficial for clean and efficient hydrogen e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2014