Niphargus–Thiothrix associations may be widespread in sulphidic groundwater ecosystems: evidence from southeastern Romania
نویسندگان
چکیده
Niphargus is a speciose amphipod genus found in groundwater habitats across Europe. Three Niphargus species living in the sulphidic Frasassi caves in Italy harbour sulphur-oxidizing Thiothrix bacterial ectosymbionts. These three species are distantly related, implying that the ability to form ectosymbioses with Thiothrix may be common among Niphargus. Therefore, Niphargus-Thiothrix associations may also be found in sulphidic aquifers other than Frasassi. In this study, we examined this possibility by analysing niphargids of the genera Niphargus and Pontoniphargus collected from the partly sulphidic aquifers of the Southern Dobrogea region of Romania, which are accessible through springs, wells and Movile Cave. Molecular and morphological analyses revealed seven niphargid species in this region. Five of these species occurred occasionally or exclusively in sulphidic locations, whereas the remaining two were restricted to nonsulphidic areas. Thiothrix were detected by PCR on all seven Dobrogean niphargid species and observed using microscopy to be predominantly attached to their hosts' appendages. 16S rRNA gene sequences of the Thiothrix epibionts fell into two main clades, one of which (herein named T4) occurred solely on niphargids collected in sulphidic locations. The other Thiothrix clade was present on niphargids from both sulphidic and nonsulphidic areas and indistinguishable from the T3 ectosymbiont clade previously identified on Frasassi-dwelling Niphargus. Although niphargids from Frasassi and Southern Dobrogea are not closely related, the patterns of their association with Thiothrix are remarkably alike. The finding of similar Niphargus-Thiothrix associations in aquifers located 1200 km apart suggests that they may be widespread in European groundwater ecosystems.
منابع مشابه
Repeatedly Evolved Host-Specific Ectosymbioses between Sulfur-Oxidizing Bacteria and Amphipods Living in a Cave Ecosystem
Ectosymbioses between invertebrates and sulfur-oxidizing bacteria are widespread in sulfidic marine environments and have evolved independently in several invertebrate phyla. The first example from a freshwater habitat, involving Niphargus ictus amphipods and filamentous Thiothrix ectosymbionts, was recently reported from the sulfide-rich Frasassi caves in Italy. Subsequently, two new Niphargus...
متن کاملIdentification of Thiothrix unzii in two distinct ecosystems.
AIMS Molecular procedures were used to identify Thiothrix spp. in biofilms from sulphide-rich waters in two distinct ecosystems. METHODS AND RESULTS Biofilm samples were obtained from two groundwater-fed systems in central and northern Florida, including an artesian spring and municipal water tank. The 16S rDNA in each sample was directly amplified by polymerase chain reaction. CONCLUSIONS ...
متن کاملCan Environment Predict Cryptic Diversity? The Case of Niphargus Inhabiting Western Carpathian Groundwater
In the last decade, several studies have shown that subterranean aquatic habitats harbor cryptic species with restricted geographic ranges, frequently occurring as isolated populations. Previous studies on aquatic subterranean species have implied that habitat heterogeneity can promote speciation and that speciation events can be predicted from species' distributions. We tested the prediction t...
متن کاملNovel Large Sulfur Bacteria in the Metagenomes of Groundwater-Fed Chemosynthetic Microbial Mats in the Lake Huron Basin
Little is known about large sulfur bacteria (LSB) that inhabit sulfidic groundwater seeps in large lakes. To examine how geochemically relevant microbial metabolisms are partitioned among community members, we conducted metagenomic analysis of a chemosynthetic microbial mat in the Isolated Sinkhole, which is in a deep, aphotic environment of Lake Huron. For comparison, we also analyzed a white ...
متن کاملDevelopment and application of a monoclonal antibody against Thiothrix spp.
Historically, methods used to identify Thiothrix spp. in environmental samples have been inadequate because isolation and identification procedures are time-consuming and often fail to separate Thiothrix spp. from other filamentous microorganisms. We described a monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) procedure which was used to identify Thiothrix spp. in wastewater,...
متن کامل