Learning Dynamics: System Identification for Perceptually Challenged Agents

نویسندگان

  • Kenneth Basye
  • Thomas L. Dean
  • Leslie Pack Kaelbling
چکیده

From the perspective of an agent, the input/output behavior of the environment in which it is embedded can be described as a dynamical system. Inputs correspond to the actions executable by the agent in making transitions between states of the environment. Outputs correspond to the perceptual information available to the agent in particular states of the environment. We view dynamical system identiication as inference of deterministic nite-state automata from sequences of input/output pairs. The agent can innuence the sequence of input/output pairs it is presented by pursuing a strategy for exploring the environment. We identify two sorts of perceptual errors: errors in perceiving the output of a state and errors in perceiving the inputs actually carried out in making a transition from one state to another. We present eecient, high-probability learning algorithms for a number of system identiication problems involving such errors. We also present the results of empirical investigations applying these algorithms to learning spatial representations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Output Consensus Control of Nonlinear Non-minimum Phase Multi-agent Systems Using Output Redefinition Method

This paper concerns the problem of output consensus in nonlinear non-minimum phase systems. The main contribution of the paper is to guarantee achieving consensus in the presence of unstable zero dynamics. To achieve this goal, an output redefinition method is proposed. The new outputs of agents are functions of original outputs and internal states and defined such that the dynamics of agents a...

متن کامل

An Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources

This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...

متن کامل

Learning Dynamics System Identi cation for Perceptually Challenged Agents

From the perspective of an agent the input output behavior of the environment in which it is embedded can be described as a dynamical system Inputs correspond to the actions executable by the agent in making transitions between states of the environment Outputs correspond to the perceptual information available to the agent in particular states of the environment We view dynamical system identi...

متن کامل

Intelligent identification of vehicle’s dynamics based on local model network

This paper proposes an intelligent approach for dynamic identification of the vehicles. The proposed approach is based on the data-driven identification and uses a high-performance local model network (LMN) for estimation of the vehicle’s longitudinal velocity, lateral acceleration and yaw rate. The proposed LMN requires no pre-defined standard vehicle model and uses measurement data to identif...

متن کامل

Perceptually Grounded Lexicon Formation Using Inconsistent Knowledge

Typically, multi-agent models for studying the evolution of perceptually grounded lexicons assume that agents perceive the same set of objects, and that there is either joint attention, corrective feedback or cross-situational learning. In this paper we address these two assumptions, by introducing a new multi-agent model for the evolution of perceptually grounded lexicons, where agents do not ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 1995