Junction formation of Cu3BiS3 investigated by Kelvin probe force microscopy and surface photovoltage measurements

نویسندگان

  • Fredy Mesa
  • William Chamorro
  • William Vallejo
  • Robert Baier
  • Thomas Dittrich
  • Alexander Grimm
  • Martha C Lux-Steiner
  • Sascha Sadewasser
چکیده

Recently, the compound semiconductor Cu(3)BiS(3) has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu(3)BiS(3) absorber layer and the junction formation with CdS, ZnS and In(2)S(3) buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20-100 nm, and a considerably smaller work-function distribution for In(2)S(3) compared to that of CdS and ZnS. For In(2)S(3) and CdS buffer layers the KPFM experiments indicate negatively charged Cu(3)BiS(3) grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In(2)S(3) buffer layer. Our findings indicate that Cu(3)BiS(3) may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct assessment of p-n junctions in single GaN nanowires by Kelvin probe force microscopy.

Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrink...

متن کامل

Photoelectric Junctions Between GaAs and Photosynthetic Reaction Center Protein

The electronic coupling between the photoactive proteins and semiconductors can be used for fabrication of a hybrid biosolid-state electrooptical devices. The robust cyanbacterial nanosized protein-chlorophyll complex photosystem I (PS I) can generate a photovoltage of 1 V with a quantum efficiency of ∼1 and can be used as a phototransistor gate. A functional dry-oriented junction was fabricate...

متن کامل

Plasmon-Enhanced Surface Photovoltage of ZnO/Ag Nanogratings

We investigated the surface photovoltage (SPV) behaviors of ZnO/Ag one-dimensional (1D) nanogratings using Kelvin probe force microscopy (KPFM). The grating structure could couple surface plasmon polaritons (SPPs) with photons, giving rise to strong light confinement at the ZnO/Ag interface. The larger field produced more photo-excited carriers and increased the SPV. SPP excitation influenced t...

متن کامل

Kelvin probe force microscopy of nanocrystalline TiO2 photoelectrodes

Dye-sensitized solar cells (DSCs) provide a promising third-generation photovoltaic concept based on the spectral sensitization of a wide-bandgap metal oxide. Although the nanocrystalline TiO2 photoelectrode of a DSC consists of sintered nanoparticles, there are few studies on the nanoscale properties. We focus on the microscopic work function and surface photovoltage (SPV) determination of TiO...

متن کامل

Surface potential of chalcopyrite films measured by KPFM

Atomic force microscopy is widely used to characterize the surface topography of a variety of samples. Kelvin probe force microscopy (KPFM) additionally allows determining images of the surface potential with nanometer resolution. The KPFM technique will be introduced and studies on surfaces of chalcopyrite semiconductors for solar cell absorbers will be presented. It is shown that operation in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2012