The Class of Inverse M-Matrices Associated to Random Walks
نویسندگان
چکیده
THE CLASS OF INVERSE M-MATRICES ASSOCIATED TO RANDOM WALKS∗ CLAUDE DELLACHERIE† , SERVET MARTINEZ‡ , AND JAIME SAN MARTIN‡ Abstract. Given W = M−1, with M a tridiagonal M -matrix, we show that there are two diagonal matrices D,E and two nonsingular ultrametric matrices U, V such that DWE is the Hadamard product of U and V . If M is symmetric and row diagonally dominant, we can take D = E = I. We relate this problem with potentials associated to random walks and study more closely the class of random walks that lose mass at one or two extremes.
منابع مشابه
Möbius Functions and Semigroup Representation Theory Ii: Character Formulas and Multiplicities
We generalize the character formulas for multiplicities of irreducible constituents from group theory to semigroup theory using Rota’s theory of Möbius inversion. The technique works for a large class of semigroups including: inverse semigroups, semigroups with commuting idempotents, idempotent semigroups and semigroups with basic algebras. Using these tools we are able to give a complete descr...
متن کاملSemigroups, Rings, and Markov Chains
We analyze random walks on a class of semigroups called ``left-regular bands.'' These walks include the hyperplane chamber walks of Bidigare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable and we calculate the eigenvalues and multiplicities. The methods lead to explicit formulas for the projections onto the eigenspaces. As examples of...
متن کامل0 Ju n 20 00 SEMIGROUPS , RINGS , AND MARKOV CHAINS KENNETH
We analyze random walks on a class of semigroups called “leftregular bands”. These walks include the hyperplane chamber walks of Bidigare, Hanlon, and Rockmore. Using methods of ring theory, we show that the transition matrices are diagonalizable and we calculate the eigenvalues and multiplicities. The methods lead to explicit formulas for the projections onto the eigenspaces. As examples of th...
متن کاملOn the nonnegative inverse eigenvalue problem of traditional matrices
In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.
متن کاملGeneralized Drazin inverse of certain block matrices in Banach algebras
Several representations of the generalized Drazin inverse of an anti-triangular block matrix in Banach algebra are given in terms of the generalized Banachiewicz--Schur form.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 34 شماره
صفحات -
تاریخ انتشار 2013