Representing Face Images for Emotion Classification
نویسندگان
چکیده
We compare the generalization performance of three distinct representation schemes for facial emotions using a single classification strategy (neural network). The face images presented to the classifiers are represented as: full face projections of the dataset onto their eigenvectors (eigenfaces); a similar projection constrained to eye and mouth areas (eigenfeatures); and finally a projection of the eye and mouth areas onto the eigenvectors obtained from 32x32 random image patches from the dataset. The latter system achieves 86% generalization on novel face images (individuals the networks were not trained on) drawn from a database in which human subjects consistently identify a single emotion for the face .
منابع مشابه
A comprehensive experimental comparison of the aggregation techniques for face recognition
In face recognition, one of the most important problems to tackle is a large amount of data and the redundancy of information contained in facial images. There are numerous approaches attempting to reduce this redundancy. One of them is information aggregation based on the results of classifiers built on selected facial areas being the most salient regions from the point of view of classificati...
متن کاملA Comparative Study of Gender and Age Classification in Speech Signals
Accurate gender classification is useful in speech and speaker recognition as well as speech emotion classification, because a better performance has been reported when separate acoustic models are employed for males and females. Gender classification is also apparent in face recognition, video summarization, human-robot interaction, etc. Although gender classification is rather mature in a...
متن کاملFace Recognition using an Affine Sparse Coding approach
Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...
متن کاملEmotion Recognition Using Facial Expressions with Active Appearance Models
Recognizing emotion using facial expressions is a key element in human communication. In this paper we discuss a framework for the classification of emotional states, based on still images of the face. The technique we present involves the creation of an active appearance model (AAM) trained on face images from a publicly available database to represent shape and texture variation key to expres...
متن کاملCategorical Perception in Facial Emotion Classification
We present an automated emotion recognition system that is capable of identifying six basic emotions (happy, surprise, sad, angry, fear, disgust) in novel face images. An ensemble of simple feed-forward neural networks are used to rate each of the images. The outputs of these networks are then combined to generate a score for each emotion. The networks were trained on a database of face images ...
متن کامل