Local linear estimation of concordance probability with application to covariate effects models on association for bivariate failure-time data.
نویسندگان
چکیده
Bivariate survival analysis has wide applications. In the presence of covariates, most literature focuses on studying their effects on the marginal distributions. However covariates can also affect the association between the two variables. In this article we consider the latter issue by proposing a nonstandard local linear estimator for the concordance probability as a function of covariates. Under the Clayton copula, the conditional concordance probability has a simple one-to-one correspondence with the copula parameter for different data structures including those subject to independent or dependent censoring and dependent truncation. The proposed method can be used to study how covariates affect the Clayton association parameter without specifying marginal regression models. Asymptotic properties of the proposed estimators are derived and their finite-sample performances are examined via simulations. Finally, for illustration, we apply the proposed method to analyze a bone marrow transplant data set.
منابع مشابه
On Concomitants of Order Statistics from Farlie-Gumbel-Morgenstern Bivariate Lomax Distribution and its Application in Estimation
‎In this paper‎, ‎we have dealt with the distribution theory of concomitants of order statistics arising from Farlie-Gumbel-Morgenstern bivariate Lomax distribution‎. ‎We have discussed the estimation of the parameters associated with the distribution of the variable Y of primary interest‎, ‎based on the ranked set sample defined by ordering the marginal observations...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملAssociation Parameters Regression for Bivariate Failure-Time Data
Copula models are often used to model the dependence structure in bivariate failure-time data. We consider a covariate effect regression method on the copula parameter for Archimedean copulas. The proposed method can handle three different data structures, namely typical bivariate data, semi-competing risks data and dependent truncation data. We derive large-sample properties of the proposed es...
متن کاملبرآورد تابع بقای شرطی زمان شکست بهشرط یک متغیر کمکی زمانمتغیر با مشاهدات سانسورشدهی بازهای
In this paper, we propose an approach for the nonparametric estimation of the conditional survival function of a time to failure‎ ‎given a time-varying covariate under interval-censoring for the failure time. Our strategy consists in‎ ‎modeling the covariate path with a random effects model, ‎as is done in the degradation and joint longitudinal and survival data modeling&lrm...
متن کاملBeta-Linear Failure Rate Distribution and its Applications
We introduce in this paper a new four-parameter generalized version of the linear failure rate distribution which is called Beta-linear failure rate distribution. The new distribution is quite flexible and can be used effectively in modeling survival data and reliability problems. It can have a constant, decreasing, increasing and bathtub-shaped failure rate function depending on its parameter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lifetime data analysis
دوره 21 1 شماره
صفحات -
تاریخ انتشار 2015