High-Temperature Experimental and Theoretical Study of the Unimolecular Dissociation of 1,3,5-Trioxane.

نویسندگان

  • Awad B S Alquaity
  • Binod Raj Giri
  • John M H Lo
  • Aamir Farooq
چکیده

Unimolecular dissociation of 1,3,5-trioxane was investigated experimentally and theoretically over a wide range of conditions. Experiments were performed behind reflected shock waves over the temperature range of 775-1082 K and pressures near 900 Torr using a high-repetition rate time of flight mass spectrometer (TOF-MS) coupled to a shock tube (ST). Reaction products were identified directly, and it was found that formaldehyde is the sole product of 1,3,5-trioxane dissociation. Reaction rate coefficients were extracted by the best fit to the experimentally measured concentration-time histories. Additionally, high-level quantum chemical and RRKM calculations were employed to study the falloff behavior of 1,3,5-trioxane dissociation. Molecular geometries and frequencies of all species were obtained at the B3LYP/cc-pVTZ, MP2/cc-pVTZ, and MP2/aug-cc-pVDZ levels of theory, whereas the single-point energies of the stationary points were calculated using coupled cluster with single and double excitations including the perturbative treatment of triple excitation (CCSD(T)) level of theory. It was found that the dissociation occurs via a concerted mechanism requiring an energy barrier of 48.3 kcal/mol to be overcome. The new experimental data and theoretical calculations serve as a validation and extension of kinetic data published earlier by other groups. Calculated values for the pressure limiting rate coefficient can be expressed as log10 k∞ (s(-1)) = [15.84 - (49.54 (kcal/mol)/2.3RT)] (500-1400 K).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Low Temperature Spectroscopic Observation of 1,3,5-Trioxane-2,4,6-Trione: The Cyclic Trimer of Carbon Dioxide.

1,3,5-Trioxane-2,4,6-trione (cyclic trimer of CO2) is the product of a four-step synthesis: chlorination of isobutyraldehyde; cyclotrimerization of 2-chloro-2-methylpropanal; dehydochlorination of 2,4,6-tris(2-chloropropan)-2-yl-1,3,5-trioxane; ozonolysis at -80 °C of 2,4,6-tri(propan-2-ylidene)-1,3,5-trioxane. This trioxane-trione is detected in solution at temperatures between -80 to -40 °C, ...

متن کامل

Theoretical Study on the Kinetics of the Reaction of C2H with C2H2

In this theoretical research, the mechanism of the C2H + C2H2 reaction is studied by high-level quantum-chemical methods and kinetics of the reaction is investigated by statistical rate theories. High-level electronic structure calculation methods including M06-2X, CCSD(T), CBS-Q and G4 methods are employed to explore the doublet potential energy surface of the reaction and compute the molecula...

متن کامل

A Theoretical Study on the Structure-Radical Scavenging Activity of Some Hydroxyphenols

Antioxidants are made for the struggle and reconstruction of the damaged cells, because of their ability in destroying the free radicals. On account of their importance, a theoretical procedure was applied for the study of the molecular structure and radical scavenging activity of six hydroxyphenols which have been introduced as antioxidant compounds. All geometry structures were optimized by M...

متن کامل

Rotationally-resolved spectroscopy of the band of 1,3,5-trioxane

Rotationally-resolved spectra of the m16 band of 1,3,5-trioxane, centered near 1177 cm 1, have been obtained via cavity ringdown spectroscopy using a continuous-wave external-cavity quantum cascade laser and a slit expansion nozzle. 219 transitions were identified and fitted to determine the excited state rotational constants for this band. In addition to fundamental interest, these data could ...

متن کامل

The Mechanism for Unimolecular Decomposition of RDX (1,3,5-Trinitro-1,3,5-triazine), an ab Initio Study

Gas phase hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a relatively stable molecule which releases a large amount of energy upon decomposition. Although gas-phase unimolecular decomposition experiments suggest at least two major pathways, there is no mechanistic understanding of the reactions involving RDX or other energetic molecules (such as HMX and TATB), used in applications ranging fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 119 25  شماره 

صفحات  -

تاریخ انتشار 2015