The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks

نویسنده

  • Gregory F. Cooper
چکیده

Bayesian belief networks provide a natural, efficient method for representing probabilistic dependencies among a set of variables. For these reasons, numerous researchers are exploring the use of belief networks as a knowledge representation m artificial intelligence. Algorithms have been developed previously for efficient probabilistic inference using special classes of belief networks. More general classes of belief networks, however, have eluded efforts to develop efficient inference algorithms. We show that probabilistic inference using belief networks is NP-hard. Therefore, it seems unlikely that an exact algorithm can be developed to perform probabilistic inference efficiently over all classes of belief networks. This result suggests that research should be directed away from the search for a general, efficient probabilistic inference algorithm, and toward the design of efficient special-case, average-case, and approximation algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

Approximating Bayesian Belief Networks by Arc Removal

Bayesian belief networks or causal probabilistic networks may reach a certain size and complexity where the computations involved in exact probabilistic inference on the network tend to become rather time consuming. Methods for approximating a network by a simpler one allow the computational complexity of probabilistic inference on the network to be reduced at least to some extend. We propose a...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A randomized approximation algorithm for probabilistic inference on bayesian belief networks

Researchers in decision analysis and artificial intelligence (AI) have used Bayesian belief networks to build probabilistic expert systems. Using standard methods drawn from the theory of computational complexity, workers in the field have shown that the problem of probabilistic inference in belief networks is difficult and almost certainly intractable. We have developed a randomized approximat...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artif. Intell.

دوره 42  شماره 

صفحات  -

تاریخ انتشار 1990