Is gamma-band activity in the local field potential of V1 cortex a "clock" or filtered noise?

نویسندگان

  • Samuel P Burns
  • Dajun Xing
  • Robert M Shapley
چکیده

Gamma-band (25-90 Hz) peaks in local field potential (LFP) power spectra are present throughout the cerebral cortex and have been related to perception, attention, memory, and disorders (e.g., schizophrenia and autism). It has been theorized that gamma oscillations provide a "clock" for precise temporal encoding and "binding" of signals about stimulus features across brain regions. For gamma to function as a clock, it must be autocoherent: phase and frequency conserved over a period of time. We computed phase and frequency trajectories of gamma-band bursts, using time-frequency analysis of LFPs recorded in macaque primary visual cortex (V1) during visual stimulation. The data were compared with simulations of random networks and clock signals in noise. Gamma-band bursts in LFP data were statistically indistinguishable from those found in filtered broadband noise. Therefore, V1 LFP data did not contain clock-like gamma-band signals. We consider possible functions for stochastic gamma-band activity, such as a synchronizing pulse signal.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Searching for autocoherence in the cortical network with a time-frequency analysis of the local field potential.

Gamma-band peaks in the power spectrum of local field potentials (LFP) are found in multiple brain regions. It has been theorized that gamma oscillations may serve as a 'clock' signal for the purposes of precise temporal encoding of information and 'binding' of stimulus features across regions of the brain. Neurons in model networks may exhibit periodic spike firing or synchronized membrane pot...

متن کامل

Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys.

Oscillatory neural activity within the gamma band (25-90 Hz) is generally thought to be able to provide a timing signal for harmonizing neural computations across different brain regions. Using time-frequency analyses of the dynamics of gamma-band activity in the local field potentials recorded from monkey primary visual cortex, we found identical temporal characteristics of gamma activity in b...

متن کامل

Layer-Specific Entrainment of Gamma-Band Neural Activity by the Alpha Rhythm in Monkey Visual Cortex

Although the mammalian neocortex has a clear laminar organization, layer-specific neuronal computations remain to be uncovered. Several studies suggest that gamma band activity in primary visual cortex (V1) is produced in granular and superficial layers and is associated with the processing of visual input. Oscillatory alpha band activity in deeper layers has been proposed to modulate neuronal ...

متن کامل

Comparison of spatial integration and surround suppression characteristics in spiking activity and the local field potential in macaque V1.

Neurons in primary visual cortex exhibit well documented centre-surround receptive field organization, whereby the centre is dominated by excitatory influences and the surround is generally dominated by inhibitory influences. These effects have largely been established by measuring the output of neurons, i.e. their spiking activity. How excitation and inhibition are reflected in the local field...

متن کامل

Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 26  شماره 

صفحات  -

تاریخ انتشار 2011