Detection of an allele conferring resistance to Bacillus sphaericus binary toxin in Culex quinquefasciatus populations by molecular screening.

نویسندگان

  • Karlos Diogo de Melo Chalegre
  • Tatiany Patrícia Romão
  • Liliane Barbosa Amorim
  • Daniela Bandeira Anastacio
  • Rosineide Arruda de Barros
  • Cláudia Maria Fontes de Oliveira
  • Lêda Regis
  • Osvaldo Pompílio de-Melo-Neto
  • Maria Helena Neves Lobo Silva-Filha
چکیده

The activity of the Bacillus sphaericus binary (Bin) toxin on Culex quinquefasciatus larvae depends on its specific binding to the Cqm1 receptor, a midgut membrane-bound alpha-glucosidase. A 19-nucleotide deletion in the cqm1 gene (cqm1(REC)) mediates high-level resistance to Bin toxin. Here, resistance in nontreated and B. sphaericus-treated field populations of C. quinquefasciatus was assessed through bioassays as well as a specific PCR assay designed to detect the cqm1(REC) allele in individual larvae. Resistance ratios at 90% lethal concentration, gathered through bioassays, were close to 1 and indicate that the selected populations had similar levels of susceptibility to B. sphaericus, comparable to that of a laboratory colony. A diagnostic PCR assay detected the cqm1(REC) allele in all populations investigated, and its frequency in two nontreated areas was 0.006 and 0.003, while the frequency in the B. sphaericus-treated population was significantly higher. Values of 0.053 and 0.055 were detected for two distinct sets of samples, and homozygote resistant larvae were found. Evaluation of Cqm1 expression in individual larvae through alpha-glucosidase assays corroborated the allelic frequency revealed by PCR. The data from this study indicate that the cqm1(REC) allele was present at a detectable frequency in nontreated populations, while the higher frequency in samples from the treated area is, perhaps, correlated with the exposure to B. sphaericus. This is the first report of the molecular detection of a biolarvicide resistance allele in mosquito populations, and it confirms that the PCR-based approach is suitable to track such alleles in target populations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Novel mutations associated with resistance to Bacillus sphaericus in a polymorphic region of the Culex quinquefasciatus cqm1 gene.

Bin toxin from Bacillus sphaericus acts on Culex quinquefasciatus larvae by binding to Cqm1 midgut-bound receptors, and disruption of the cqm1 gene is the major cause of resistance. The goal of this work was to screen for a laboratory-selected resistance cqm1(REC) allele in field populations in the city of Recife, Brazil, and to describe other resistance-associated polymorphisms in the cqm1 gen...

متن کامل

Cyt1A from Bacillus thuringiensis restores toxicity of Bacillus sphaericus against resistant Culex quinquefasciatus (Diptera: Culicidae).

The 2362 strain of Bacillus sphaericus, which produces a binary toxin highly active against Culex mosquitoes, has been developed recently as a commercial larvicide. It is being used currently in operational mosquito control programs in several countries including Brazil, France, India, and the United States. Laboratory studies have shown that mosquitoes can develop resistance to B. sphaericus, ...

متن کامل

Evolution of resistance toward Bacillus sphaericus or a mixture of B. sphaericus+Cyt1A from Bacillus thuringiensis, in the mosquito, Culex quinquefasciatus (Diptera: Culicidae).

The 2362 strain of Bacillus sphaericus (Bs) Neide is a highly mosquitocidal bacterium used in commercial bacterial larvicides primarily to control mosquitoes of the genus Culex. Unfortunately, Bs is at high risk for selecting resistance in mosquito populations, because its binary toxin apparently only binds to a single receptor type on midgut microvilli. A potential key strategy for delaying re...

متن کامل

Production of Cry11A and Cry11Ba toxins in Bacillus sphaericus confers toxicity towards Aedes aegypti and resistant Culex populations.

Cry11A from Bacillus thuringiensis subsp. israelensis and Cry11Ba from Bacillus thuringiensis subsp. jegathesan were introduced, separately and in combination, into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Two loci on the B. sphaericus chromosome were chosen as target sites for recombination: the binary toxin locus and the gene encoding the 36-kDa protease that may b...

متن کامل

Improvement of Bacillus sphaericus toxicity against dipteran larvae by integration, via homologous recombination, of the Cry11A toxin gene from Bacillus thuringiensis subsp. israelensis.

Integrative plasmids were constructed to enable integration of foreign DNA into the chromosome of Bacillus sphaericus 2297 by in vivo recombination. Integration of the aphA3 kanamycin resistance gene by a two-step procedure demonstrated that this strategy was applicable with antibiotic resistance selection. Hybridization experiments evidenced two copies of the operon encoding the binary toxin f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 75 4  شماره 

صفحات  -

تاریخ انتشار 2009