Sodium glucose transporter‐2 inhibition has no renoprotective effects on non‐diabetic chronic kidney disease
نویسندگان
چکیده
Sodium glucose transporter (SGLT)-2 inhibition has renoprotective effects in diabetic kidney disease. Whether similar effects can be achieved also in non-diabetic kidney disease is speculative. Chronic kidney disease was induced in C57BL/6N mice by feeding an oxalate-rich diet for 14 days, known to induce nephrocalcinosis-related tubular atrophy and interstitial fibrosis without directly affecting the glomerular compartment. Empagliflozin treatment started from day 0 of oxalate feeding had no effect on the decline of glomerular filtration rate, crystal deposition, blood urea nitrogen or serum creatinine levels on day 7 and 14. Tissue morphometry of tubular injury and kidney mRNA levels of kidney injury molecule-1 or tissue inhibitor of metalloproteinase-2 were comparable between empagliflozin- and vehicle-treated mice with oxalate nephropathy on day 7 and 14. Similarly, empagliflozin did not affect markers of interstitial fibrosis, including silver, alpha smooth muscle actin (αSMA) and collagen 1 staining, and mRNA levels of fibronectin-1, collagen 1α1, fibroblast-specific protein-1, and transforming growth factor (TGF)-β2 on day 7 and 14. Thus, the specific renoprotective mechanisms-of-action of SGLT2 inhibition in diabetic kidney disease do not apply to chronic oxalosis, a non-diabetic form of chronic kidney disease.
منابع مشابه
SGLT2 Inhibitors as a Therapeutic Option for Diabetic Nephropathy
Diabetic nephropathy (DN) is a major cause of end-stage renal disease (ESRD) worldwide. Glycemic and blood pressure (BP) control are important but not sufficient to attenuate the incidence and progression of DN. Sodium-glucose cotransporter (SGLT) 2 inhibitors are a new class of glucose-lowering agent suggested to exert renoprotective effects in glucose lowering-dependent and independent fashio...
متن کاملBeat it early: putative renoprotective haemodynamic effects of oral hypoglycaemic agents
Diabetic kidney disease represents a considerable burden; around one-third of patients with type 2 diabetes develop chronic kidney disease. In health, the kidneys play an important role in the regulation of glucose homeostasis via glucose utilization, gluconeogenesis and glucose reabsorption. In patients with diabetes, renal glucose homeostasis is significantly altered with an increase in both ...
متن کاملSodium-Glucose Linked Cotransporter-2 Inhibition Does Not Attenuate Disease Progression in the Rat Remnant Kidney Model of Chronic Kidney Disease
Pharmacological inhibition of the proximal tubular sodium-glucose linked cotransporter-2 (SGLT2) leads to glycosuria in both diabetic and non-diabetic settings. As a consequence of their ability to modulate tubuloglomerular feedback, SGLT2 inhibitors, like agents that block the renin-angiotensin system, reduce intraglomerular pressure and single nephron GFR, potentially affording renoprotection...
متن کاملInhibition of Kidney Proximal Tubular Glucose Reabsorption Does Not Prevent against Diabetic Nephropathy in Type 1 Diabetic eNOS Knockout Mice
BACKGROUND AND OBJECTIVE Sodium glucose cotransporter 2 (SGLT2) is the main luminal glucose transporter in the kidney. SGLT2 inhibition results in glycosuria and improved glycaemic control. Drugs inhibiting this transporter have recently been approved for clinical use and have been suggested to have potential renoprotective benefits by limiting glycotoxicity in the proximal tubule. We aimed to ...
متن کاملDiabetic nephropathy: Time to withhold development and progression - A review
The recent discoveries in the fields of pathogenesis and management of diabetic nephropathy have revolutionized the knowledge about this disease. Little was added to the management of diabetic nephropathy after the introduction of renin angiotensin system blockers. The ineffective role of the renin- angiotensin system blockers in primary prevention of diabetic nephropathy in type 1 diabetes mel...
متن کامل