Evaluation of dose prediction error and optimization convergence error in four‐dimensional inverse planning of robotic stereotactic lung radiotherapy

نویسندگان

  • Mark K.H. Chan
  • Dora L.W. Kwong
  • Anthony Tong
  • Eric Tam
  • Sherry C.Y. Ng
چکیده

Inverse optimization of robotic stereotactic lung radiotherapy is typically performed using relatively simple dose calculation algorithm on a single instance of breathing geometry. Variations of patient geometry and tissue density during respiration could reduce the dose accuracy of these 3D optimized plans. To quantify the potential benefits of direct four-dimensional (4D) optimization in robotic lung radiosurgery, 4D optimizations using 1) ray-tracing algorithm with equivalent path-length heterogeneity correction (4EPL(opt)), and 2) Monte Carlo (MC) algorithm (4MC(opt)), were performed in 25 patients. The 4EPL(opt) plans were recalculated using MC algorithm (4MC(recal)) to quantify the dose prediction errors (DPEs). Optimization convergence errors (OCEs) were evaluated by comparing the 4MC(recal) and 4MC(opt) dose results. The results were analyzed by dose-volume histogram indices for selected organs. Statistical equivalence tests were performed to determine the clinical significance of the DPEs and OCEs, compared with a 3% tolerance. Statistical equivalence tests indicated that the DPE and the OCE are significant predominately in GTV D98%. The DPEs in V20 of lung, and D2% of cord, trachea, and esophagus are within 1.2%, while the OCEs are within 10.4% in lung V20 and within 3.5% in trachea D2%. The marked DPE and OCE suggest that 4D MC optimization is important to improve the dosimetric accuracy in robotic-based stereotactic body radiotherapy, despite the longer computation time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...

متن کامل

Stereotactic Body Radiotherapy for Lung Lesions using Multiple Phase 3D-CT Based on the Analysis of Radiobiological Parameters

Introduction: Planning target volume (PTV) is generated from internal treatment volume (ITV) using four-dimensional computed tomography (4D-CT) for enhanced therapeutic gain in the stereotactic body radiotherapy for lung lesions (SBRT-Lung). This study aimed to propose a strategy to generate ITV on multiple-phase 3D-CT and enhance therapeutic gain in SBRT-Lung. <stron...

متن کامل

A quantitative investigation on lung tumor site on its motion tracking in radiotherapy with external surrogates

Introduction: In external beam radiotherapy each effort is done to deliver 3D dose distribution onto the tumor volume uniformly, while minimizing the dose to healthy organs at the same time. Radiation treatment of tumors located at thorax region such as lung and liver has a challenging issue during target localization since these tumors move mainly due to respiration. There are...

متن کامل

The evaluation of lung doses for radiation pneumonia risk in stereotactic body radiotherapy: A comparison of intensity modulated radiotherapy, intensity modulated arc therapy, cyberknife and helical tomotherapy

Background: Radiation Pneumonia (RP) is one of the most extensive side effects in Stereotactic Body Radiotherapy (SBRT) of lung cancer. SBRT are performed by means of Intensity Modulated Radiotherapy (IMRT), Intensity Modulated Arc Therapy (IMAT), CyberKnife (CK) or Helical Tomotherapy (HT) treatment methods. In this study, we performed a plan study to determine the plan parameter such as the M...

متن کامل

The effect of statistical uncertainty on inverse treatment planning based on Monte Carlo dose calculation.

The effect of the statistical uncertainty, or noise, in inverse treatment planning for intensity modulated radiotherapy (IMRT) based on Monte Carlo dose calculation was studied. Sets of Monte Carlo beamlets were calculated to give uncertainties at Dmax ranging from 0.2% to 4% for a lung tumour plan. The weights of these beamlets were optimized using a previously described procedure based on a s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2013