Concerning Triangulations of Products of Simplices

نویسنده

  • Camilo Sarmiento
چکیده

In this thesis, we undertake a combinatorial study of certain aspects of triangulations of cartesian products of simplices, particularly in relation to their relevance in toric algebra and to their underlying product structure. The first chapter reports joint work with Samu Potka. The object of study is a class of homogeneous toric ideals called cut ideals of graphs, that were introduced by Sturmfels and Sullivant 2006. Apart from their inherent appeal to combinatorial commutative algebra, these ideals also generalize graph statistical models for binary data and are related to some statistical models for phylogenetic trees. Specifically, we consider minimal free resolutions for the cut ideals of trees. We propose a method to combinatorially estimate the Betti numbers of the ideals in this class. Using this method, we derive upper bounds for some of the Betti numbers, given by formulas exponential in the number of vertices of the tree. Our method is based on a common technique in commutative algebra whereby arbitrary homogeneous ideals are deformed to initial monomial ideals, which are easier to analyze while conserving some of the information of the original ideals. The cut ideal of a tree on n vertices turns out to be isomorphic to the Segre product of the cut ideals of its n-1 edges (in particular, its algebraic properties do not depend on its shape). We exploit this product structure to deform the cut ideal of a tree to an initial monomial ideal with a simple combinatorial description: it coincides with the edge ideal of the incomparability graph of the power set of the edges of the tree. The vertices of the incomparability graph are subsets of the edges of the tree, and two subsets form an edge whenever they are incomparable. In order to obtain algebraic information about these edge ideals, we apply an idea introduced by Dochtermann and Engström in 2009 that consists in regarding the edge ideal of a graph as the (monomial) Stanley-Reisner ideal of the independence complex of the graph. Using Hochster’s formula for computting Betti numbers of Stanley-Reisner ideals by means of simplicial homology, the computation of the Betti numbers of these monomial ideals is turned to the enumeration of induced subgraphs of the incomparability graph. That the resulting values give upper bounds for the Betti numbers of the cut ideals of trees is an important well-known result in commutative algebra. In the second chapter, we focus on some combinatorial features of triangulations of the point configuration obtained as the cartesian product of two standard simplices. These were explored in collaboration with César Ceballos and Arnau Padrol, and had a two-fold motivation. On the one hand, we intended to understand the influence of the product structure on the set of triangulations of the cartesian product of two point configurations; on the other hand, the set of all triangulations of the product of two simplices is an intricate and interesting object that has attracted attention both in discrete geometry and in other fields of mathematics such as commutative algebra, algebraic geometry, enumerative geometry

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enumerating Triangulations for Products of Two Simplices and for Arbitrary Configurations of Points

We propose algorithms to enumerate (1) classes of regular triangulations in respect of symmetry for products of two simplices and (2) all triangulations, regular or not, for arbitrary con gurations of points. There are many results for triangulations in two dimension, but little is known for higher dimensions. Both objects we enumerate in this paper are for general dimensions. Products of two s...

متن کامل

Enumerating Triangulations for Arbitrary Con gurations of Points and for Products of Two Simplices

We propose two algorithms to enumerate triangulations. These algorithms enumerate all triangulations, regular or not, for arbitrary con gurations of points in any dimensions. Our rst algorithm characterizes triangulations as maximal independent sets of the intersection graph. This graph has the maximal dimensional simplices of the given point con guration as vertices, and edges between two simp...

متن کامل

The Cayley Trick and Triangulations of Products of Simplices

We use the Cayley Trick to study polyhedral subdivisions of the product of two simplices. For arbitrary (fixed) l, we show that the numbers of regular and non-regular triangulations of ∆ ×∆ grow, respectively, as k and 2 2). For the special case of ∆ ×∆, we relate triangulations to certain class of lozenge tilings. This allows us to compute the exact number of triangulations up to k = 15, show ...

متن کامل

Dyck path triangulations and extendability

We introduce the Dyck path triangulation of the cartesian product of two simplices ∆n−1×∆n−1. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of ∆rn−1 × ∆n−1 using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of t...

متن کامل

On Minimal Triangulations of Products of Convex Polygons

We give new lower bounds for the minimal number of simplices needed in a triangulation of the product of two convex polygons, improving the lower bounds in [Bo&al05].

متن کامل

Tropical Convexity

The notions of convexity and convex polytopes are introduced in the setting of tropical geometry. Combinatorial types of tropical polytopes are shown to be in bijection with regular triangulations of products of two simplices. Applications to phylogenetic trees are discussed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014