SOStream: Self Organizing Density-Based Clustering over Data Stream
نویسندگان
چکیده
In this paper we propose a data stream clustering algorithm, called Self Organizing density based clustering over data Stream (SOStream). This algorithm has several novel features. Instead of using a fixed, user defined similarity threshold or a static grid, SOStream detects structure within fast evolving data streams by automatically adapting the threshold for density-based clustering. It also employs a novel cluster updating strategy which is inspired by competitive learning techniques developed for Self Organizing Maps (SOMs). In addition, SOStream has built-in online functionality to support advanced stream clustering operations including merging and fading. This makes SOStream completely online with no separate offline components. Experiments performed on KDD Cup’99 and artificial datasets indicate that SOStream is an effective and superior algorithm in creating clusters of higher purity while having lower space and time requirements compared to previous stream clustering algorithms.
منابع مشابه
SOTXTSTREAM: Density-based self-organizing clustering of text streams
A streaming data clustering algorithm is presented building upon the density-based self-organizing stream clustering algorithm SOSTREAM. Many density-based clustering algorithms are limited by their inability to identify clusters with heterogeneous density. SOSTREAM addresses this limitation through the use of local (nearest neighbor-based) density determinations. Additionally, many stream clus...
متن کاملNGTSOM: A Novel Data Clustering Algorithm Based on Game Theoretic and Self- Organizing Map
Identifying clusters is an important aspect of data analysis. This paper proposes a noveldata clustering algorithm to increase the clustering accuracy. A novel game theoretic self-organizingmap (NGTSOM ) and neural gas (NG) are used in combination with Competitive Hebbian Learning(CHL) to improve the quality of the map and provide a better vector quantization (VQ) for clusteringdata. Different ...
متن کاملClassification of Streaming Fuzzy DEA Using Self-Organizing Map
The classification of fuzzy data is considered as the most challenging areas of data analysis and the complexity of the procedures has been obstacle to the development of new methods for fuzzy data analysis. However, there are significant advances in modeling systems in which fuzzy data are available in the field of mathematical programming. In order to exploit the results of the researches on ...
متن کاملAn Ensemble of Adaptive Neuro-Fuzzy Kohonen Networks for Online Data Stream Fuzzy Clustering
A new approach to data stream clustering with the help of an ensemble of adaptive neuro-fuzzy systems is proposed. The proposed ensemble is formed with adaptive neuro-fuzzy self-organizing Kohonen maps in a parallel processing mode. Their learning procedure is carried out with different parameters that define a nature of cluster borders’ blurriness. Clusters’ quality is estimated in an online m...
متن کاملLeaDen-Stream: A Leader Density-Based Clustering Algorithm over Evolving Data Stream
Clustering evolving data streams is important to be performed in a limited time with a reasonable quality. The existing micro clustering based methods do not consider the distribution of data points inside the micro cluster. We propose LeaDen-Stream (Leader Density-based clustering algorithm over evolving data Stream
متن کامل