Support Vector Machines and Area Under ROC curve
نویسنده
چکیده
For many years now, there is a growing interest around ROC curve for characterizing machine learning performances. This is particularly due to the fact that in real-world problems misclassification costs are not known and thus, ROC curve and related metrics such as the Area Under ROC curve (AUC) can be a more meaningful performance measures. In this paper, we propose a SVMs based algorithm for AUC maximization and show that under certain conditions this algorithm is related to 2-norm soft margin Support Vector Machines. We present experiments that compare SVMs performances to those of other AUC maximization based algorithms and provide empirical analysis of SVMs behavior with regards to ROCbased metrics. Our main conclusion is that SVMs can maximize both AUC and accuracy. keywords : Support vector machines, quadratic programming, AUC, ROC curve.
منابع مشابه
Support Vector Machines for Classification of Malignant and Benign Lesions
This paper presents an exploratory study of the effectiveness of support vector machines used as a tool for computer-aided breast cancer diagnosis. We explore the discriminatory power of heterogeneous mammographic and sonographic descriptors in solving the classification task. Various feature selection techniques were tested to find a set of descriptors that outperforms those from similar studi...
متن کاملAnomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...
متن کاملOptimizing Area Under Roc Curve with SVMs
For many years now, there is a growing interest around ROC curve for characterizing machine learning performances. This is particularly due to the fact that in real-world problems misclassification costs are not known and thus, ROC curve and related metrics such as the Area Under ROC curve (AUC) can be a more meaningful performance measures. In this paper, we propose a quadratic programming bas...
متن کاملPredicting Implantation Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection Using Data Mining Techniques
Objective The main purpose of this article is to choose the best predictive model for IVF/ICSI classification and to calculate the probability of IVF/ICSI success for each couple using Artificial intelligence. Also, we aimed to find the most effective factors for prediction of ART success in infertile couples. MaterialsAndMethods In this cross-sectional study, the data of 486 patients are colle...
متن کاملSTAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES
Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P
متن کامل