Unusual properties of catalase A (KatA) of Pseudomonas aeruginosa PA14 are associated with its biofilm peroxide resistance.

نویسندگان

  • Dong-Ho Shin
  • Young-Seok Choi
  • You-Hee Cho
چکیده

Pseudomonas aeruginosa is a ubiquitous environmental bacterium whose major catalase (KatA) is highly stable, extracellularly present, and required for full virulence as well as for peroxide resistance in planktonic and biofilm states. Here, we dismantled the function of P. aeruginosa KatA (KatA(Pa)) by comparing its properties with those of two evolutionarily related (clade 3 monofunctional) catalases from Bacillus subtilis (KatA(Bs)) and Streptomyces coelicolor (CatA(Sc)). We switched the coding region for KatA(Pa) with those for KatA(Bs) and CatA(Sc), expressed the catalases under the potential katA-regulatory elements in a P. aeruginosa PA14 katA mutant, and verified their comparable protein levels by Western blot analysis. The activities of KatA(Bs) and CatA(Sc), however, were less than 40% of the KatA(Pa) activity, suggestive of the difference in intrinsic catalatic activity or efficiency for posttranslational activity modulation in P. aeruginosa. Furthermore, KatA(Bs) and CatA(Sc) were relatively susceptible to proteinase K, whereas KatA(Pa) was highly stable upon proteinase K treatment. As well, KatA(Bs) and CatA(Sc) were undetectable in the extracellular milieu. Nevertheless, katA(Bs) and catA(Sc) fully rescued the peroxide sensitivity and osmosensitivity of the katA mutant, respectively. Both catalase genes rescued the attenuated virulence of the katA mutant in mouse acute infection and Drosophila melanogaster models. However, the peroxide susceptibility of the katA mutant in a biofilm growth state was rescued by neither katA(Bs) nor catA(Sc). Based on these results, we propose that the P. aeruginosa KatA is highly stable compared to the two major catalases from gram-positive bacteria and that its unique properties involving metastability and extracellular presence may contribute to the peroxide resistance of P. aeruginosa biofilm and presumably to chronic infections.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dual promoters of the major catalase (KatA) govern distinct survival strategies of Pseudomonas aeruginosa

KatA is the major catalase required for hydrogen peroxide (H2O2) resistance and acute virulence in Pseudomonas aeruginosa PA14, whose transcription is driven from the promoter (katAp1) located at 155 nucleotide (nt) upstream of the start codon. Here, we identified another promoter (katAp2), the +1 of which was mapped at the 51 nt upstream of the start codon, which was responsible for the basal ...

متن کامل

IscR modulates catalase A (KatA) activity, peroxide resistance and full virulence of Pseudomonas aeruginosa PA14.

We have identified the iscR (PA3815) gene encoding an iron-sulfur cluster assembly regulator homologue as one of the genes required for peroxide resistance in Pseudomonas aeruginosa PA14. Here, we present the phenotypic characterization of an iscR deletion mutant in terms of KatA expression, stress responses, and virulence. The iscR null mutant exhibited reduced KatA activity at the posttransla...

متن کامل

Pyocyanin Promotes Extracellular DNA Release in Pseudomonas aeruginosa

Bacterial adhesion and biofilm formation are both dependent on the production of extracellular polymeric substances (EPS) mainly composed of polysaccharides, proteins, lipids, and extracellular DNA (eDNA). eDNA promotes biofilm establishment in a wide range of bacterial species. In Pseudomonas aeruginosa eDNA is major component of biofilms and is essential for biofilm formation and stability. I...

متن کامل

بیوفیلم پسودوموناس ایروژینوزا و روش‌های پیشگیری و درمان‌های تازه آن

  Background and Objective: Microbial biofilms are responsible for 65% of human infections, and are resistance to antibiotics. Pseudomonas aeruginosa is one of the most important biofilm producing bacteria. This review tries to explain the last mechanisms of Pseudomonas aeruginosa biofilm formation, the reasons for its resistance to antimicrobial agents, as well as new preventive measures and a...

متن کامل

Increased mutability of Pseudomonas aeruginosa in biofilms.

OBJECTIVES Isolates of Pseudomonas aeruginosa from cystic fibrosis (CF) patients are frequently hypermutable due to selection of mutants with defects in DNA repair genes such as mutS. Since P. aeruginosa grows as a biofilm within the infected CF lung, it is possible that this mode of growth enhances the mutability of the organism thereby increasing the opportunity to derive permanent hypermutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 190 8  شماره 

صفحات  -

تاریخ انتشار 2008