Preparation of phase pure, dense fine grained ceramics by conventional and spark plasma sintering of La-substituted BiFeO3 nanoparticles
نویسندگان
چکیده
High density ceramics of the system Bi1-xLaxFeO3, 0 ≤ x ≤ 0.15, have been prepared starting from nanoparticles obtained by mechanosynthesis. The ceramics have been sintered conventionally at 850oC and by spark plasma sintering (SPS). Sintering conditions have been optimized to obtain single phase ceramics, and the microstructure of the ceramics has been compared. Ceramics prepared conventionally present grain sizes from 5 μm to less than 1 μm, whereas grain sizes by SPS are in the range from 50-100 nm, which demonstrates that it is possible to obtain nanostructured ceramics of La-substituted BiFeO3 using mechanosynthesis followed by SPS at low temperature (625oC-650oC). The as-prepared SPS ceramics show low resistivity, indicating some reduction in the samples. However, after an oxidative anneal in air, ceramics are highly insulating at room temperature and electrically homogeneous. The high quality of the ceramics has also been demonstrated by XRD, EDX, Raman and DSC.
منابع مشابه
Electrical properties of stoichiometric BiFeO3 prepared by mechanosynthesis with either conventional or spark plasma sintering
Phase-pure powders of stoichiometric BiFeO3 have been prepared by mechanosynthesis. Ceramics sintered by either conventional heating in air or spark plasma sintering (SPS) followed by oxidative anneal in air are highly insulating with conductivity e.g. ~10 Scm at 300 °C and activation energy 1.15(2) eV, which are comparable to those of a good-quality BiFeO3 single crystal. By contrast, the as-p...
متن کاملFabrication of Nanostructured Cu matrix Nanocomposites by High Energy Mechanical Milling and Spark Plasma Sintering
Spark plasma sintering (SPS) is a sintering process that is capable of sintering hard worked powders in short times. This technique was used to fabricate bulk Cu and Cu-SiC nanocomposites. Pure Cu and mixed powders of Cu including 4 vol% of SiC nanoparticles were mechanically alloyed for 25 h and sintered at 750˚C under vacuum condition by SPS method. Microstructures of the materials were chara...
متن کاملIn-situ reactive synthesis of full dense Si2N2O by incorporating of Amourphous nanosized Si3N4;effect of MgO and Y2O3
Si2N2O is considered as a new great potential structural/functional candidate in place of Si3N4. The amorphous Si3N4 nanopowder was incorporated into silica sol by adding of MgO and Y2O3 as sintering aid. Synthesized powders were heated by spark plasma sintering at a heating rate of 100 oC/min yielded fully dense compacts at 1550 and 1750 oC for 40 min. The phase formation of samples was charac...
متن کاملComparison of Creep Behavior in Alumina Based Ceramics Densified by Spark Plasma Sintering and Hot Pressing
Spark plasma sintering (SPS) method, as plasma activated sintering, is a method applicable for rapid sintering of metals and ceramics. Owing to the advantage of rapid heating, the alumina ceramics obtained by SPS have a grain size and density comparable to those of hot pressed ones. The increase of densification rate may be related to some difference in ion transport characteristics. This study...
متن کاملSolid state sintering of very low and negative thermal expansion ceramics by Spark Plasma
Lithium aluminosilicate powder precursors of compositions Li2O:Al2O3:SiO2 as 1:1:2; and 1:1:3.11 were synthesized and sintered by the Spark Plasma Sintering technique. The sintering conditions were adjusted to obtain dense ceramic materials in an attempt to avoid the presence of a glassy phase. XRD and SEM images were employed for composition and microstructure characterization. The coefficient...
متن کامل