Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms.

نویسندگان

  • K M Nielsen
  • K Smalla
  • J D van Elsas
چکیده

To elucidate the biological significance of dead bacterial cells in soil to the intra- and interspecies transfer of gene fragments by natural transformation, we have exposed the kanamycin-sensitive recipient Acinetobacter sp. strain BD413(pFG4) to lysates of the kanamycin-resistant donor bacteria Acinetobacter spp., Pseudomonas fluorescens, and Burkholderia cepacia. Detection of gene transfer was facilitated by the recombinational repair of a partially (317 bp) deleted kanamycin resistance gene in the recipient bacterium. The investigation revealed a significant potential of these DNA sources to transform Acinetobacter spp. residing both in sterile and in nonsterile silt loam soil. Heat-treated (80 degrees C, 15 min) cell lysates were capable of transforming strain BD413 after 4 days of incubation in sterile soil and for up to 8 h in nonsterile soil. Transformation efficiencies obtained in vitro and in situ with the various lysates were similar to or exceeded those obtained with conventionally purified DNA. The presence of cell debris did not inhibit transformation in soil, and the debris may protect DNA from rapid biological inactivation. Natural transformation thus provides Acinetobacter spp. with an efficient mechanism to access genetic information from different bacterial species in soil. The relatively short-term biological activity (e.g., transforming activity) of chromosomal DNA in soil contrasts the earlier reported long-term physical stability of DNA, where fractions have been found to persist for several weeks in soil. Thus, there seems to be a clear difference between the physical and the functional significance of chromosomal DNA in soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ComP, a pilin-like protein essential for natural competence in Acinetobacter sp. Strain BD413: regulation, modification, and cellular localization.

We recently identified a pilin-like competence factor, ComP, which is essential for natural transformation of the gram-negative soil bacterium Acinetobacter sp. strain BD413. Here we demonstrate that transcription and synthesis of the pilin-like competence factor ComP are maximal in the late stationary growth phase, whereas competence is induced immediately after inoculation of a stationary-pha...

متن کامل

A novel competence gene, comP, is essential for natural transformation of Acinetobacter sp. strain BD413.

Acinetobacter sp. strain BD413 (= ATCC 33305), a nutritionally versatile bacterium, has an extremely efficient natural transformation system. Here we describe the generation of eight transformation-affected mutants of Acinetobacter sp. strain BD413 by insertional mutagenesis. These mutants were found by Southern blot analysis and complementation studies to result from single nptII marker insert...

متن کامل

Identification and characterization of ComE and ComF, two novel pilin-like competence factors involved in natural transformation of Acinetobacter sp. strain BD413.

Although the high level of competence for natural transformation of Acinetobacter sp. strain BD413 has been the subject of numerous studies, only two competence genes, comC and comP, have been identified to date. By chromosomal walking analysis we found two overlapping open reading frames, designated comE and comF, starting 61 bp downstream of comC. comE and comF are expressed as stable protein...

متن کامل

Natural transformation in mesophilic and thermophilic bacteria: identification and characterization of novel, closely related competence genes in Acinetobacter sp. strain BD413 and Thermus thermophilus HB27.

The mesophile Acinetobacter sp. strain BD413 and the extreme thermophile Thermus thermophilus HB27 display high frequencies of natural transformation. In this study we identified and characterized a novel competence gene in Acinetobacter sp. strain BD413, comA, whose product displays significant similarities to the competence proteins ComA and ComEC in Neisseria and Bacillus species. Transcript...

متن کامل

Identification and characterization of a novel competence gene, comC, required for DNA binding and uptake in Acinetobacter sp. strain BD413.

A gene (comC) essential for natural transformation was identified in Acinetobacter sp. strain BD413. ComC has a typical leader sequence and is similar to different type IV pilus assembly factors. A comC mutant (T308) is not able to bind or take up DNA but exhibits a piliation phenotype indistinguishable from the transformation wild type as revealed by electron microscopy.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 66 1  شماره 

صفحات  -

تاریخ انتشار 2000