Selective scattering in a zigzag graphene nanoribbon

نویسندگان

  • Jun Nakabayashi
  • Susumu Kurihara
چکیده

Electric transport of a zigzag graphene nanoribbon through a step-like potential or a potential barrier is studied by using the recursive Green’s function method. The results for a step-like potential show that scattering processes in a zigzag graphene nanoribbon obey a following selection rule: when the number of zigzag chains N is even, electrons in the band m are only scattered into the bands m+2n, where n is an integer. According to this selection rule, a step-like potential blocks the current when the potential height exceeds the incident energy as long as only the low-energy region is treated. Then, replacing a step-like potential with a potential barrier, we also show that it can play the role of a “band-selective filter”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electronic Behavior of Doped Graphene Nanoribbon Device: NEGF+DFT

Quantum transport properties of pure and functioned infinite lead-connection region-lead systembased on the zigzag graphene nanoribbon (2-zGNR) have been investigated. In this work the effectof the doping functionalization on the quantum transport of the 2-zGNR has been computationallystudied. Also, the effect of the imposed gate voltages (-3.0, 0.0 and +3.0 V) and bias voltages 0.0 to2.0 V hav...

متن کامل

Parity conservation in electron-phonon scattering in zigzag graphene nanoribbon

Articles you may be interested in Quantum conductance of zigzag graphene oxide nanoribbons Chiral graphene nanoribbons: Objective molecular dynamics simulations and phase-transition modeling Phonon limited transport in graphene nanoribbon field effect transistors using full three dimensional quantum mechanical simulation

متن کامل

Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes

We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...

متن کامل

Trapped modes in zigzag graphene nanoribbons

We study the scattering on an ultra-low potential in zigzag graphene nanoribbon. Using a mathematical framework based on the continuous Dirac model and the augmented scattering matrix, we derive a condition for the existence of a trapped mode. We consider the threshold energies where the continuous spectrum changes its multiplicity and show that the trapped modes may appear for energies slightl...

متن کامل

Tailoring the transmission lineshape spectrum of zigzag graphene nanoribbon based heterojunctions via controlling their width and edge protrusions.

We report a first-principles analysis of electron transport through narrow zigzag graphene nanoribbon (up to 2.2 nm) based wedge-shaped heterojunctions. We show that the width difference between the electrode and the scattering region and the edge protrusion of heterojunctions can be tuned to endow the system's transmission spectrum with distinctive features. In particular, transport through ju...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008