Adiabatic pulse preparation for imaging iron oxide nanoparticles.
نویسندگان
چکیده
Superparamagnetic iron oxide nanoparticles produce changes in the surrounding microscopic magnetic field. A method for generating contrast based on the application of an adiabatic preparation pulse and the failure of the adiabatic condition surrounding the nanoparticles is introduced in this article. Images were obtained in the presence and absence of an adiabatic preparation pulse and the difference was obtained. With the use of an adiabatic full passage pulse, the contrast in the difference image depends linearly on iron concentration up to 1 mM. The use of an adiabatic zero passage pulse resulted in higher sensitivity to nanoparticles compared to the adiabatic full passage, while maintaining linear concentration dependence to 0.1 mM. This technique was shown to be insensitive to magnetization transfer and B(0) inhomogeneity. With its linearity with iron concentration and insensitivity to changes in the main magnetic field, the new method is well suited for quantitative iron oxide nanoparticle imaging.
منابع مشابه
Characterization of Adiabatic Pulse Prepared Cell Imaging of Iron Oxide Nanoparticles
Figure 2: The spin-echo image of the tumor shows the inhomogeneous enhancement of the tumor tissue (A) and the adiabatic contrast image shows a region of enhancement with suppression of the PBS and tumor (B). Histological examination of this section with Prussian Blue staining shows the presence of SPIO (C) in this region highlighted in (A) by a green oval. Characterization of Adiabatic Pulse P...
متن کاملPreparation of Gd2O3 Ultrafine Nanoparticles by Pulse Electrodeposition Followed by Heat-treatment Method
Gd2O3 nanoparticles were prepared by a two–step process; cathodic electrodeposition followed by heat-treatment method. First, Gd(OH)3 nanoparticles was galvanostatically deposited from nitrate bath on the steel substrate by pulse current (PC) mode. The deposition experiments was conducted at a typical on-time and off-time (ton=1ms and toff=1ms) for 60 min. The electrodeposited precursor was the...
متن کاملPreparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملPreparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
متن کاملANALYTICAL STUDY OF EFFECT OF BILAYER INORGANIC AND ORGANIC COATING AROUND THE IRON OXIDE NANOPARTICLES ON MAGNETIC RESONANCE IMAGING CONTRAST
Background & Aims: In recent years, iron oxide nanoparticles have been used in contrast-enhanced magnetic resonance imaging for diagnosing a wide range of diseases. In order to provide biocompatibility and prevent the toxicity of the nanoparticles, using organic or inorganic coating around these nanoparticles is important for their application. The aim of this study is to investigate the effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 67 4 شماره
صفحات -
تاریخ انتشار 2012