Decreased NADH glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene.

نویسندگان

  • M A Schoenbeck
  • S J Temple
  • G B Trepp
  • J M Blumenthal
  • D A Samac
  • J S Gantt
  • G Hernandez
  • C P Vance
چکیده

Legumes obtain a substantial portion of their nitrogen (N) from symbiotic N2 fixation in root nodules. The glutamine synthetase (GS, EC 6.3.1.2)/glutamate synthase (GOGAT) cycle is responsible for the initial N assimilation. This report describes the analysis of a transgenic alfalfa (Medicago sativa L.) line containing an antisense NADH-GOGAT (EC 1.4.1.14) under the control of the nodule-enhanced aspartate amino-transferase (AAT-2) promoter. In one transgenic line, NADH-GOGAT enzyme activity was reduced to approximately 50%, with a corresponding reduction in protein and mRNA. The transcript abundance for cytosolic GS, ferredoxin-dependent GOGAT (EC 1.4.7.1), AAT-2 (EC 2.6.1.1), asparagine synthase (EC 6.3.5.4), and phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) were unaffected, as were enzyme activities for AAT, PEPC and GS. Antisense NADH-GOGAT plants grown under symbiotic conditions were moderately chlorotic and reduced in growth and N content, even though symbiotic N2 fixation was not significantly reduced. The addition of nitrate relieved the chlorosis and restored growth and N content. Surprisingly, the antisense NADH-GOGAT plants were male sterile resulting from inviable pollen. A reduction in NADH-GOGAT enzyme activity and transcript abundance in the antisense plants was measured during the early stages of flower development. Inheritance of the transgene was stable and resulted in progeny with a range of NADH-GOGAT activity. These data indicate that NADH-GOGAT plays a critical role in the assimilation of symbiotically fixed N and during pollen development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression.

NADH-dependent glutamate synthase (NADH-GOGAT; EC 1.4.1.14) is a key enzyme in primary nitrogen assimilation in alfalfa (Medicago sativa L.) root nodules. Here we report that in alfalfa, a single gene, probably with multiple alleles, encodes for NADH-GOGAT. In situ hybridizations were performed to assess the location of NADH-GOGAT transcript in alfalfa root nodules. In wild-type cv Saranac nodu...

متن کامل

Ammonia assimilation by rhizobium cultures and bacteroids.

The enzymes involved in the assimilation of ammonia by free-living cultures of Rhizobium spp. are glutamine synthetase (EC. 6.o.I.2), glutamate synthase (L-glutamine:2-oxoglutarate amino transferase) and glutamate dehydrogenase (ED I.4.I.4). Under conditions of ammonia or nitrate limitation in a chemostat the assimilation of ammonia by cultures of R. leguminosarum, R. trifolii and R. japonicum ...

متن کامل

Molecular characterization of NADH-dependent glutamate synthase from alfalfa nodules.

Alfalfa NADH-dependent glutamate synthase (NADH-GOGAT), together with glutamine synthetase, plays a central role in the assimilation of symbiotically fixed nitrogen into amino acids in root nodules. Antibodies previously raised against purified NADH-GOGAT were employed to screen a cDNA library prepared using RNA isolated from nodules of 20-day-old alfalfa plants. A 7.2-kb cDNA clone was obtaine...

متن کامل

Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression.

Transgenic Medicago truncatula plants were produced harboring chimeric gene constructs of the glutamine synthetase (GS) cDNA clones (MtGS1a or MtGS1b) fused in sense or antisense orientation to the nodule-specific leghemoglobin promoter Mtlb1. A series of transgenic plants were obtained showing a 2- to 4-fold alteration in nodule GS activity when compared with control plants. Western and northe...

متن کامل

Pathways of Nitrogen Metabolism in Nodules of Alfalfa (Medicago sativa L.).

Exposure of intact alfalfa nodules to (15)N(2) showed that in bacteroids the greatest flow of (15)N was to NH(3). Label was also detected in glutamic acid, aspartic acid, and asparagine (Glu, Asp and Asn), but at far lower levels. In the host plant cytosols, more (15)N was incorporated into Asn than into other compounds. Detached nodules were also used to study the metabolic pathway of N assimi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 51 342  شماره 

صفحات  -

تاریخ انتشار 2000