Hydrophobization of glass surface by adsorption of poly(dimethylsiloxane).

نویسندگان

  • Krastanka G Marinova
  • Diana Christova
  • Slavka Tcholakova
  • Evtim Efremov
  • Nikolai D Denkov
چکیده

Silica or glass particles are introduced in a poly(dimethylsiloxane) (PDMS) matrix for various applications. A particular feature of these systems is that PDMS adsorbs on the surface of the dispersed particles, thus rendering them more hydrophobic with time. The mechanism of this process of in situ hydrophobization is still poorly understood. The major aims of the present study are (1) to quantify the rate of surface hydrophobization by PDMS and, on this basis, to discuss the mechanism of the process; (2) to compare the contact angles of surfaces that are hydrophobized by different procedures and are placed in contact with different fluid interfaces-PDMS-water, hexadecane-water, and air-water; and (3) to check how the type of surfactant affects the contact angles, viz., the effective hydrophobicity of the surface. We present experimental results for the kinetics of hydrophobization of glass surfaces, which are characterized by measuring the three-phase contact angle of glass-surfactant solution-PDMS. The data reveal two consecutive stages in the hydrophobization process: The first stage is relatively fast and the contact angle increases from 0 degrees to about 90 degrees within several minutes. This stage is explained with the physical adsorption of the PDMS chains, as a result of hydrogen-bond formation with the surface silanol groups. The second stage is much slower and hours or days are required at room temperature to reach the final contact angle (typically, 150-160 degrees). This stage is explained as grafting of the PDMS molecules on the surface by chemical reaction with the surface silanol groups. If the glass surface had been pretreated by hexamethyldisilazane (HMDS), so that CH(3) groups had blocked most of the surface silanol groups, the first stage in the hydrophobization process is almost missing-the contact angle slowly changes at room temperature from about 90 degrees up to 120 degrees. The experiments aimed to compare several hydrophobization procedures showed that PDMS ensures larger contact angle (more hydrophobic surface) than grafted alkyl chains. The contact angles at the PDMS-water and hexadecane-water interfaces were found to be very similar to each other, and much larger than that at the air-water interface. Interestingly, we found that the ionic surfactants practically do not affect the contact angle of PDMS-hydrophobized surface, whereas the nonionic surfactants reduce this angle. Similar trends are expected with silica surfaces, as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coating of poly(dimethylsiloxane) with n-dodecyl-beta-D-maltoside to minimize nonspecific protein adsorption.

Poly(dimethylsiloxane)(PDMS) surface is coated with n-dodecyl-beta-D-maltoside, which reduces the nonspecifically adsorbed protein on the PDMS surface to the single molecule level.

متن کامل

Poly(oxyethylene) based surface coatings for poly(dimethylsiloxane) microchannels.

Control of surface properties in microfluidic systems is an indispensable prerequisite for successful bioanalytical applications. Poly(dimethylsiloxane) (PDMS) microfluidic devices are hampered from unwanted adsorption of biomolecules and lack of methods to control electroosmotic flow (EOF). In this paper, we propose different strategies to coat PDMS surfaces with poly(oxyethylene) (POE) molecu...

متن کامل

Absorption of hydrophobic compounds into the poly(dimethylsiloxane) coating of solid-phase microextraction fibers: high partition coefficients and fluorescence microscopy images.

The use of solid-phase microextraction with poly(dimethylsiloxane) (PDMS)-coated glass fibers for the extraction and analysis of hydrophobic organic analytes is increasing. The literature on this topic is characterized by large discrepancies in partition coefficients and an uncertainty of whether highly hydrophobic analytes are retained by absorption into the fiber coating or by adsorption to t...

متن کامل

Hydrophobization of inorganic oxide surfaces using dimethylsilanediol.

Dimethylsilanediol is a stable crystalline solid that was described in 1953. As the monomer of an important class of commercial products (poly(dimethylsiloxanes)-silicones, PDMS) and as a simple molecule in its own right (the silicon analog of acetone hydrate), it has been neglected by several fields of fundamental and applied research including the hydrophobization of inorganic oxide surfaces....

متن کامل

Controlled hydrophobic functionalization of natural fibers through self-assembly of amphiphilic diblock copolymer micelles.

The functionalization of natural fibers is an important task that has recently received considerable attention. We investigated the formation of a hydrophobic layer from amphiphilic diblock copolymer micelles [polystyrene-block-poly(N-methyl-4-vinyl pyridinium iodide)] on natural fibers and on a model surface (mica). A series of micelles were prepared. The micelles were characterized by using c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 21 25  شماره 

صفحات  -

تاریخ انتشار 2005