Estimating Population Exposure to Fine Particulate Matter in the Conterminous U.S. using Shape Function-based Spatiotemporal Interpolation Method: A County Level Analysis.
نویسندگان
چکیده
This paper investigates spatiotemporal interpolation methods for the application of air pollution assessment. The air pollutant of interest in this paper is fine particulate matter PM2.5. The choice of the time scale is investigated when applying the shape function-based method. It is found that the measurement scale of the time dimension has an impact on the quality of interpolation results. Based upon the result of 10-fold cross validation, the most effective time scale out of four experimental ones was selected for the PM2.5 interpolation. The paper also estimates the population exposure to the ambient air pollution of PM2.5 at the county-level in the contiguous U.S. in 2009. The interpolated county-level PM2.5 has been linked to 2009 population data and the population with a risky PM2.5 exposure has been estimated. The risky PM2.5 exposure means the PM2.5 concentration exceeding the National Ambient Air Quality Standards. The geographic distribution of the counties with a risky PM2.5 exposure is visualized. This work is essential to understanding the associations between ambient air pollution exposure and population health outcomes.
منابع مشابه
Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application
Appropriate spatiotemporal interpolation is critical to the assessment of relationships between environmental exposures and health outcomes. A powerful assessment of human exposure to environmental agents would incorporate spatial and temporal dimensions simultaneously. This paper compares shape function (SF)-based and inverse distance weighting (IDW)-based spatiotemporal interpolation methods ...
متن کاملSpatiotemporal Interpolation Methods for Air Pollution Exposure
This paper investigates spatiotemporal interpolation methods for the application of air pollution assessment. The air pollutant of interest in this paper is fine particulate matter PM2.5. The choice of the time scale is investigated when applying the shape function-based method. It is found that the measurement scale of the time dimension has an impact on the interpolation results. Based upon t...
متن کاملFast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree
Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and...
متن کاملEstimation of exposure to fine particulate air pollution using GIS-based modeling approach in an urban area in Tehran
In many industrialized areas, the highest concentration of particulate matter, as a major concern on public health, is being felt worldwide problem. Since the air pollution assessment and its evaluation with considering spatial dispersion analysis because of various factors are complex, in this paper, GIS-based modeling approach was utilized to zoning PM2.5 dispersion over Tehran, du...
متن کاملSpatio-temporal modeling of particulate air pollution in the conterminous United States using geographic and meteorological predictors
BACKGROUND Exposure to atmospheric particulate matter (PM) remains an important public health concern, although it remains difficult to quantify accurately across large geographic areas with sufficiently high spatial resolution. Recent epidemiologic analyses have demonstrated the importance of spatially- and temporally-resolved exposure estimates, which show larger PM-mediated health effects as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- GSTF international journal on computing
دوره 1 4 شماره
صفحات -
تاریخ انتشار 2012