An Algorithm to Extract Rules from Artificial Neural Networks for Medical Diagnosis Problems
نویسندگان
چکیده
Artificial neural networks (ANNs) have been successfully applied to solve a variety of classification and function approximation problems. Although ANNs can generally predict better than decision trees for pattern classification problems, ANNs are often regarded as black boxes since their predictions cannot be explained clearly like those of decision trees. This paper presents a new algorithm, called rule extraction from ANNs (REANN), to extract rules from trained ANNs for medical diagnosis problems. A standard three-layer feedforward ANN with four-phase training is the basis of the proposed algorithm. In the first phase, the number of hidden nodes in ANNs is determined automatically by a constructive algorithm. In the second phase, irrelevant connections and input nodes are removed from trained ANNs without sacrificing the predictive accuracy of ANNs. The continuous activation values of the hidden nodes are discretized by using an efficient heuristic clustering algorithm in the third phase. Finally, rules are extracted from compact ANNs by examining the discretized activation values of the hidden nodes. Extensive experimental studies on three benchmark classification problems, i.e. breast cancer, diabetes and lenses, demonstrate that REANN can generate high quality rules from ANNs, which are comparable with other methods in terms of number of rules, average number of conditions for a rule, and predictive accuracy.
منابع مشابه
Comparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملDesigning an expert system for differential diagnosis of β-Thalassemia minor and Iron-Deficiency anemia using neural network
Introduction: Artificial neural networks are a type of systems that use very complex technologies and non-algorithmic solutions for problem solving. These characteristics make them suitable for various medical applications. This study set out to investigate the application of artificial neural networks for differential diagnosis of thalassemia minor and iron-deficiency anemia. Methods: It is...
متن کاملAN INTELLIGENT FAULT DIAGNOSIS APPROACH FOR GEARS AND BEARINGS BASED ON WAVELET TRANSFORM AS A PREPROCESSOR AND ARTIFICIAL NEURAL NETWORKS
In this paper, a fault diagnosis system based on discrete wavelet transform (DWT) and artificial neural networks (ANNs) is designed to diagnose different types of fault in gears and bearings. DWT is an advanced signal-processing technique for fault detection and identification. Five features of wavelet transform RMS, crest factor, kurtosis, standard deviation and skewness of discrete wavelet co...
متن کاملExtracting Symbolic Rules for Medical Diagnosis Problem
Neural networks (NNs) have been successfully applied to solve a variety of application problems involving classification and function approximation. Although backpropagation NNs generally predict better than decision trees do for pattern classification problems, they are often regarded as black boxes, i.e., their predictions cannot be explained as those of decision trees. In many applications, ...
متن کاملDiagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1009.4566 شماره
صفحات -
تاریخ انتشار 2006