Nonhyperbolic Homoclinic Chaos

نویسندگان

  • G Cicogna
  • M Santoprete
چکیده

Homoclinic chaos is usually examined with the hypothesis of hyperbolicity of the critical point. We consider here, following a (suitably adjusted) classical analytic method, the case of non-hyperbolic points and show that, under a Melnikov-type condition plus an additional assumption, the negatively and positively asymptotic sets persist under periodic perturbations, together with their infinitely many intersections on the Poincaré section. We also examine, by means of essentially the same procedure, the case of (heteroclinic) orbits tending to the infinity; this case includes in particular the classical Sitnikov 3–body problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bifurcations of Generic heteroclinic Loop Accompanied by Transcritical bifurcation

The bifurcations of generic heteroclinic loop with one nonhyperbolic equilibrium p1 and one hyperbolic saddle p2 are investigated, where p1 is assumed to undergo transcritical bifurcation. Firstly, we discuss bifurcations of heteroclinic loop when transcritical bifurcation does not happen, the persistence of heteroclinic loop, the existence of homoclinic loop connecting p1 (resp. p2) and the co...

متن کامل

Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria

The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and an inclination flip. When the nonhyperbolic equilibrium does not undergo a transcritical bifurcation, we establish the coexistence and nonco...

متن کامل

2 01 1 Dynamics near nonhyperbolic fixed points or nontransverse homoclinic points Sergey

We study dynamics in a neighborhood of a nonhyperbolic fixed point or an irreducible homoclinic tangent point. General type conditions for the existence of infinite sets of periodic points are obtained. A new method, based on the study of the dynamics of center disks, is introduced. Some results on shadowing near a non-hyperbolic fixed point of a homeomorphism are obtained.

متن کامل

Homoclinic tubes and chaos in perturbed sine-Gordon equation

Sine-Gordon equation under a quasi-periodic perturbation or a chaotic perturbation is studied. Existence of a homoclinic tube is proved. Established are chaos associated with the homoclinic tube, and ‘‘chaos cascade’’ referring to the embeddings of smaller scale chaos in larger scale chaos. 2003 Elsevier Ltd. All rights reserved.

متن کامل

Chaos in PDEs and Lax Pairs of Euler Equations

Recently, the author and collaborators have developed a systematic program for proving the existence of homoclinic orbits in partial differential equations. Two typical forms of homoclinic orbits thus obtained are: (1) transversal homoclinic orbits, (2) Silnikov homoclinic orbits. Around the transversal homoclinic orbits in infinite-dimensional autonomous systems, the author was able to prove t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999