A Novel Elliptical Basis Function Neural Networks Optimized by Particle Swarm Optimization
نویسندگان
چکیده
In this paper, a novel model of elliptical basis function neural networks (EBFNN) is proposed. Firstly, a geometry analytic algorithm is applied to construct the hyper-ellipsoid units of hidden layer of the EBFNN, i.e., an initial structure of the EBFNN, which is further pruned by the particle swarm optimization (PSO) algorithm. Finally, the experimental results demonstrated the proposed hybrid optimization algorithm for the EBFNN model is feasible and efficient, and the EBFNN is not only parsimonious but also has better generalization performance than the RBFNN.
منابع مشابه
OPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملHierarchical Radial Basis Function Neural Networks for Classification Problems
Hierarchical neural networks consist of multiple neural networks assembled in the form of an acyclic graph. The purpose of this study is to identify the hierarchical radial basis function neural networks and select important input features for each sub-RBF neural network automatically. Based on the pre-defined instruction/operator sets, a hierarchical RBF neural network can be created and evolv...
متن کاملParticle Swarm Optimization Approach for Multi-step-ahead Prediction Using Radial Basis Function Neural Network
An alternative approach, between much others, for mathematical representation of dynamics systems with complex or chaotic behaviour, is a radial basis function neural network using k-means for clustering and optimized by pseudo-inverse and particle swarm optimisation. This paper presents the implementation and study to identify a dynamic system, with nonlinear and chaotic behaviour, called Röss...
متن کاملOptimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network
This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...
متن کاملBriefs SocietySociety Neural Networks
Many real world problems can be formulated as optimization problems with various parameters to be optimized. Some problems only have one objective to be optimized, some may have multiple objectives to be optimized at the same time and some need to be optimized subjecting to one or more constraints. Thus numerous optimization algorithms have been proposed to solve these problems. Particle Swarm ...
متن کامل