Ether-cleaving enzyme and diol dehydratase involved in anaerobic polyethylene glycol degradation by a new <Emphasis Type="Italic">Acetobacterium</Emphasis> sp
نویسندگان
چکیده
A strictly anaerobic, homoacetogenic bacterium was enriched and isolated from anoxic sewage sludge with polyethylene glycol (PEG) 1000 as sole source of carbon and energy, and was assigned to the genus Acetobacterium on the basis of morphological and physiological properties. The new isolate fermented ethylene glycol and PEG's with molecular masses of 106 to 1000 to acetate and small amounts of ethanol. The PEG-degrading activity was not destroyed by proteinase K treatment of whole cells. In cell-free extracts, a diol dehydratase and a PEG-degrading (ether-cleaving) enzyme activity were detected which both formed acetaldehyde as reaction product. The diol dehydratase enzyme was oxygen-sensitive and was stimulated 10-14 fold by added adenosylcobalamine. This enzyme was found mainly in the cytoplasmic fraction (65%) and to some extent (35 %) in the membrane fraction. The ether-cleaving enzyme activity reacted with PEG's of molecular masses of 106 to more than 20000. The enzyme was measurable optimally in buffers of high ionic strength (4.0), was extremely oxygen-sensitive, and was inhibited by various corrinoids (adenosylcobalamine, cyanocobalamine, hydroxocobalamine, methylcobalamine). This enzyme was found exclusively in the cytoplasmic fraction. It is concluded that PEG is degraded by this bacterium inside the cytoplasm by a hydroxyl shift reaction, analogous to a diol dehydratase reaction, to form an unstable hemiacetal intermediate. The name polyethylene glycol acetaldehyde lyase is suggested for the responsible enzyme. Abbreviations: EG ethylene glycol, DiEG diethylene glycol, TriEG triethylene glycol, TeEG tetraethylene glycol, PEG polyethylene glycol (molecular mass indicated)
منابع مشابه
Enzymes Involved in Anaerobic Polyethylene Glycol Degradation by Pelobacter venetianus and Bacteroides Strain PG1.
In extracts of polyethylene glycol (PEG)-grown cells of the strictly anaerobically fermenting bacterium Pelobacter venetianus, two different enzyme activities were detected, a diol dehydratase and a PEG-degrading enzyme which was characterized as a PEG acetaldehyde lyase. Both enzymes were oxygen sensitive and depended on a reductant, such as titanium citrate or sulfhydryl compounds, for optima...
متن کاملFermentative degradation of polyethylene glycol by a strictly anaerobic, gram-negative, nonsporeforming bacterium, Pelobacter venetianus sp. nov.
The synthetic polyether polyethylene glycol (PEG) with a molecular weight of 20,000 was anaerobically degraded in enrichment cultures inoculated with mud of limnic and marine origins. Three strains (Gra PEG 1, Gra PEG 2, and Ko PEG 2) of rod-shaped, gram-negative, nonsporeforming, strictly anaerobic bacteria were isolated in mineral medium with PEG as the sole source of carbon and energy. All s...
متن کاملMechanism of anaerobic ether cleavage: conversion of 2-phenoxyethanol to phenol and acetaldehyde by Acetobacterium sp.
2-Phenoxyethanol is converted into phenol and acetate by a strictly anaerobic Gram-positive bacterium, Acetobacterium strain LuPhet1. Acetate results from oxidation of acetaldehyde that is the early product of the biodegradation process (Frings, J., and Schink, B. (1994) Arch. Microbiol. 162, 199-204). Feeding experiments with resting cell suspensions and 2-phenoxyethanol bearing two deuterium ...
متن کاملFermentative degradation of nonionic surfactants and polyethylene glycol by enrichment cultures and by pure cultures of homoacetogenic and propionate-forming bacteria.
Linear alkyl ethoxylates (polyethylene glycol alkyl ethers) were fermented completely to methane and CO2 in enrichment cultures inoculated with anoxic sewage sludge. Long-chain fatty acids were released as intermediates. No degradation was found with polypropylene glycol and polypropylene glycol-containing surfactants. Two types of primary ethoxylate-degrading bacteria were isolated and charact...
متن کاملGlycerol fermentation in Klebsiella pneumoniae: functions of the coenzyme B12-dependent glycerol and diol dehydratases.
Glycerol and diol dehydratases are inducible, coenzyme B12-dependent enzymes found together in Klebsiella pneumoniae ATCC 25955 during anaerobic growth on glycerol. Mutants of this strain isolated by a novel procedure were separately constitutive for either dehydratase, showing the structural genes for the two enzymes to be under independent control in vivo. Glycerol dehydratase and a trimethyl...
متن کامل