Validation of ground penetrating radar full-waveform inversion for field scale soil moisture mapping
نویسندگان
چکیده
Ground penetrating radar (GPR) is an efficient method for soil moisture mapping at the field scale, bridging the scale gap between small-scale invasive sensors and large-scale remote sensing instruments. Nevertheless, commonly-used GPR approaches for soil moisture characterization suffer from several limitations and the determination of the uncertainties in GPR soil moisture sensing has been poorly addressed. Herein, we used an advanced proximal GPR method based on full-waveform inversion of ultra-wideband radar data for mapping soil moisture and uncertainties in the soil moisture maps were evaluated by three different methods. First, GPRderived soil moisture uncertainties were computed from the GPR data inversion, according to measurements and modeling errors and to the sensitivity of the electromagnetic model to soil moisture. Second, the reproducibility of the soil moisture mapping was evaluated. Third, GPR-derived soil moisture was compared with ground-truth measurements (soil core sampling). The proposed GPR method appeared to be highly precise and accurate, with spatially averaged GPR inversion uncertainty of 0.0039 m3m−3, a repetition uncertainty of 0.0169 m3m−3 and an uncertainty of 0.0233 m3m−3 when compared with ground-truth measurements. These uncertainties were mapped and appeared to be related to some local model inadequacies and to small-scale variability of soil moisture. In a soil moisture mapping framework, the interpolation was found to be the determinant source of the observed uncertainties. The proposed GPR method was proven to be largely reliable in terms of accuracy and precision and appeared to be highly efficient for soil moisture ∗[email protected] mapping at the field scale.
منابع مشابه
Mapping shallow soil moisture profiles at the field scale using full-waveform inversion of ground penetrating radar data
Full-waveform inversions were applied to retrieve surface, two-layered and continuous soil moisture profiles from ground penetrating radar (GPR) data acquired in an 11-ha agricultural field situated in the loess belt area in central Belgium. The radar system consisted of a vector network analyzer combined with an off-ground horn antenna operating in the frequency range 2002000 MHz. The GPR syst...
متن کاملEstimation of soil moisture using optical, thermal and radar Remote Sensing )Case Study: South of Tehran(
Traditional methods of field measurement of soil moisture in addition to the difficulty, the need for manpower and money and fail to take place on a large scale to be able to show moisture. Therefore, remote sensing has become a widespread use .Landsat 8 satellite data and Sentinel-1 radar satellite from Tehran were provided. 72 soil samples were taken at the same time by satellite passing from...
متن کاملPotential of Mapping Soil Moisture by Combining Polsar Decomposition and Radar Backscatter Model
1. ABSTRACT Experiments undertaken in the 1970s demonstrated the sensitivity of radar backscatter to soil moisture conditions [1]. More recent advances in active microwave remote sensing have confirmed the potential for using current satellite data for the generation of soil moisture maps at different scales [2,3]. However, in addition to its strong sensitivity to the soil water content, radar ...
متن کاملEfficient three-dimensional data inversion: Soil characterization and moisture monitoring from cross-well ground-penetrating radar at a Vermont test site
We extend our methodology for three-dimensional parameter structure and value estimation and apply it to a Vermont test site. Ground-penetrating radar (GPR) cross-well travel times are inverted for estimation of heterogeneous GPR soil velocities before and after a controlled release of salt water in the unsaturated zone. The method, which is based on an approximation of the extended Kalman filt...
متن کاملIn-Situ Measurement of Soil Permittivity at Various Depths for the Calibration and Validation of Low-Frequency SAR Soil Moisture Models by Using GPR
At radar frequencies below 2 GHz, the mismatch between the 5 to 15 cm sensing depth of classical time domain reflectometry (TDR) probe soil moisture measurements and the radar penetration depth can easily lead to unreliable in situ data. Accurate quantitative measurements of soil water contents at various depths by classical methods are cumbersome and usually highly invasive. We propose an impr...
متن کامل