A Multilevel Dual Reordering Strategy for Robust Incomplete LU Factorization of Indefinite Matrices

نویسنده

  • Jun Zhang
چکیده

A dual reordering strategy based on both threshold and graph reorderings is introduced to construct robust incomplete LU (ILU) factorization of indefinite matrices. The ILU matrix is constructed as a preconditioner for the original matrix to be used in a preconditioned iterative scheme. The matrix is first divided into two parts according to a threshold parameter to control diagonal dominance. The first part with large diagonal dominance is reordered using a graph-based strategy, followed by an ILU factorization. A partial ILU factorization is applied to the second part to yield an approximate Schur complement matrix. The whole process is repeated on the Schur complement matrix and continues for a few times to yield a multilevel ILU factorization. Analyses are conducted to show how the Schur complement approach removes small diagonal elements of indefinite matrices and how the stability of the LU factor affects the quality of the preconditioner. Numerical results are used to compare the new preconditioning strategy with two popular ILU preconditioning techniques and a multilevel block ILU threshold preconditioner.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric Permutations for I-matrices to Delay and Avoid Small Pivots During Factorization

In this article, we present several new permutations for I-matrices making these more suitable for incomplete LDU-factorization preconditioners used in solving linear systems by iterative methods. A general matrix can be transformed by row permutation as well as row and columns scaling into an I-matrix, i.e. a matrix having elements of modulus 1 on the diagonal and elements of modulus of no mor...

متن کامل

A SYM-ILDL: Incomplete LDL Factorization of Symmetric Indefinite and Skew-Symmetric Matrices

SYM-ILDL is a numerical software package that computes incomplete LDLT (or ‘ILDL’) factorizations of symmetric indefinite and skew-symmetric matrices. The core of the algorithm is a Crout variant of incomplete LU (ILU), originally introduced and implemented for symmetric matrices by [Li and Saad, Crout versions of ILU factorization with pivoting for sparse symmetric matrices, Transactions on Nu...

متن کامل

Matrix Reordering Using Multilevel Graph Coarsening for ILU Preconditioning

Incomplete LU factorization (ILU) techniques are a well-known class of preconditioners, often used in conjunction with Krylov accelerators for the iterative solution of linear systems of equations. However, for certain problems, ILU factorizations can yield factors that are unstable, and in some cases quite dense. Reordering techniques based on permuting the matrix prior to performing the facto...

متن کامل

Computing a block incomplete LU preconditioner as the by-product of block left-looking A-biconjugation process

In this paper, we present a block version of incomplete LU preconditioner which is computed as the by-product of block A-biconjugation process. The pivot entries of this block preconditioner are one by one or two by two blocks. The L and U factors of this block preconditioner are computed separately. The block pivot selection of this preconditioner is inherited from one of the block versions of...

متن کامل

Experimental Study of ILU Preconditioners for Indefinite Matrices

Incomplete LU factorization preconditioners have been surprisingly successful for many cases of general nonsymmetric and indeenite matrices. However, their failure rate is still too high for them to be useful as black-box library software for general matrices. Besides fatal breakdowns due to zero pivots, the major causes of failure are inaccuracy, and instability of the triangular solves. When ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2001