Enhanced formation of a HCO3- transport metabolon in exocrine cells of Nhe1-/- mice.

نویسندگان

  • Mireya Gonzalez-Begne
  • Tetsuji Nakamoto
  • Ha-Van Nguyen
  • Andrew K Stewart
  • Seth L Alper
  • James E Melvin
چکیده

Cl(-) influx across the basolateral membrane is a limiting step in fluid production in exocrine cells and often involves functionally linked Cl(-)/HCO(3)(-) (Ae) and Na(+)/H(+) (Nhe) exchange mechanisms. The dependence of this major Cl(-) uptake pathway on Na(+)/H(+) exchanger expression was examined in the parotid acinar cells of Nhe1(-/-) and Nhe2(-/-) mice, both of which exhibited impaired fluid secretion. No change in Cl(-)/HCO(3)(-) exchanger activity was detected in Nhe2-deficient mice. Conversely, Cl(-)/HCO(3)(-) exchanger activity increased nearly 4-fold in Nhe1-deficient mice, despite only minimal or any change in mRNA and protein levels of the anion exchanger Ae2. Acetazolamide completely blocked the increase in Cl(-)/HCO(3)(-) exchanger activity in Nhe1-null mice suggesting that increased anion exchange required carbonic anhydrase activity. Indeed, the parotid glands of Nhe1(-/-) mice expressed higher levels of carbonic anhydrase 2 (Car2) polypeptide. Moreover, the enhanced Cl(-)/HCO(3)(-) exchange activity was accompanied by an increased abundance of Car2.Ae2 complexes in the parotid plasma membranes of Nhe1(-/-) mice. Anion exchanger activity was also significantly reduced in Car2-deficient mice, consistent with an important role of a putative Car2.Ae2 HCO(3)(-) transport metabolon in parotid exocrine cell function. Increased abundance of this HCO(3)(-) transport metabolon is likely one of the multiple compensatory changes in the exocrine parotid gland of Nhe1(-/-) mice that together attenuate the severity of in vivo electrolyte and acid-base balance perturbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transport metabolons with carbonic anhydrases

THE CONCEPT OF THE TRANSPORT METABOLON A metabolon has been defined as a “temporary, structural-functional, supramolecular complex of sequential metabolic enzymes and cellular structural elements, in which metabolites are passed from one active site to another without complete equilibration with the bulk cellular fluids” (Srere, 1985, 1987). This substrate channeling should decrease transit tim...

متن کامل

Metabolon disruption: a mechanism that regulates bicarbonate transport.

Carbonic anhydrases (CA) catalyze the reversible conversion of CO2 to HCO3-. Some bicarbonate transporters bind CA, forming a complex called a transport metabolon, to maximize the coupled catalytic/transport flux. SLC26A6, a plasma membrane Cl-/HCO3- exchanger with a suggested role in pancreatic HCO3- secretion, was found to bind the cytoplasmic enzyme CAII. Mutation of the identified CAII bind...

متن کامل

Critical role for NHE1 in intracellular pH regulation in pancreatic acinar cells.

The primary function of pancreatic acinar cells is to secrete digestive enzymes together with a NaCl-rich primary fluid which is later greatly supplemented and modified by the pancreatic duct. A Na+/H+ exchanger(s) [NHE(s)] is proposed to be integral in the process of fluid secretion both in terms of the transcellular flux of Na+ and intracellular pH (pHi) regulation. Multiple NHE isoforms have...

متن کامل

Anion Secretion in Murine Proximal Colon

31 Anion secretion by colonic epithelium is dependent on apical CFTR-mediated anion 32 conductance and basolateral ion transport. In many tissues, the NKCC1 Na-K-2Cl 33 cotransporter mediates basolateral Cl uptake. However, additional evidence suggests that the 34 AE2 Cl/HCO3 exchanger, when coupled with the NHE1 Na/H exchanger or a Na-HCO3 35 cotransporter (NBC), contributes to HCO3 and/or Cl ...

متن کامل

Apical maxi-K (KCa1.1) channels mediate K+ secretion by the mouse submandibular exocrine gland.

The exocrine salivary glands of mammals secrete K+ by an unknown pathway that has been associated with HCO3(-) efflux. However, the present studies found that K+ secretion in the mouse submandibular gland did not require HCO3(-), demonstrating that neither K+/HCO3(-) cotransport nor K+/H+ exchange mechanisms were involved. Because HCO3(-) did not appear to participate in this process, we tested...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 282 48  شماره 

صفحات  -

تاریخ انتشار 2007