The Kolmogorov complexity of random reals

نویسندگان

  • Liang Yu
  • Decheng Ding
  • Rodney G. Downey
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Every 2-random real is Kolmogorov random

We study reals with infinitely many incompressible prefixes. Call A ∈ 2 Kolmogorov random if (∃∞n) C(A n) > n − O(1), where C denotes plain Kolmogorov complexity. This property was suggested by Loveland and studied by Martin-Löf, Schnorr and Solovay. We prove that 2-random reals are Kolmogorov random.1 Together with the converse—proved by Nies, Stephan and Terwijn [11]—this provides a natural c...

متن کامل

Kolmogorov Complexity and Algorithmic Randomness

This paper aims to provide a minimal introduction to algorithmic randomness. In particular, we cover the equivalent 1-randomness and MartinLöf randomness. After a brief review of relevant concepts in computability, we develop the basic theory of Kolmogorov complexity, including the KC theorem and more general notion of information content measures. We then build two natural definitions of rando...

متن کامل

Kolmogorov complexity and the geometry of Brownian motion

In this paper, we continue the study of the geometry of Brownian motions which are encoded by Kolmogorov-Chaitin random reals (complex oscillations). We unfold Kolmogorov-Chaitin complexity in the context of Brownian motion and specifically to phenomena emerging from the random geometric patterns generated by a Brownian motion.

متن کامل

Degrees of monotone complexity

Levin and Schnorr (independently) introduced the monotone complexity, Km(α), of a binary string α. We use monotone complexity to define the relative complexity (or relative randomness) of reals. We define a partial ordering ≤Km on 2 by α ≤Km β iff there is a constant c such that Km(α n) ≤ Km(β n) + c for all n. The monotone degree of α is the set of all β such that α ≤Km β and β ≤Km α. We show ...

متن کامل

Kolmogorov Complexity Theory over the Reals

Kolmogorov Complexity constitutes an integral part of computability theory, information theory, and computational complexity theory— in the discrete setting of bits and Turing machines. Over real numbers, on the other hand, the BSS-machine (aka real-RAM) has been established as a major model of computation. This real realm has turned out to exhibit natural counterparts to many notions and resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Ann. Pure Appl. Logic

دوره 129  شماره 

صفحات  -

تاریخ انتشار 2004