Another Approach to Runge-Kutta Methods
نویسنده
چکیده
The condition equations are derived by the introduction of a system of equivalent differential equations, avoiding the usual formalism with trees and elementary differentials. Solutions to the condition equations are found by direct numerical optimization, during which simplifying assumptions upon the Runge-Kutta coefficients may or may not be used. Depending on the optimization criterion, different types of optimal Runge-Kutta methods can be pursued. In the present article the emphasis is on rounding minimization.
منابع مشابه
Improved Implementation of Multiple Shooting for BVPs
Boundary value problems arise in many applications, and shooting methods are one approach to approximate the solution of such problems. A Shooting method transforms a boundary value problem into a sequence of initial value problems, and takes the advantage of the speed and adaptivity of initial value problem solvers. The implementation of continuous Runge-Kutta methods with defect control for i...
متن کاملPartitioned Runge-Kutta Methods for Semi-explicit Differential-Algebraic Systems of Index 2
A general class of one-step methods for index 2 differential-algebraic systems in Hessenberg form is studied. This family of methods, which we call partitioned Runge-Kutta methods, includes all one-step methods of Runge-Kutta type proposed in the literature for integrating such DAE systems, including the more recently proposed classes of half-explicit methods. A new family of super-convergent p...
متن کاملValidated Explicit and Implicit Runge-Kutta Methods∗†
A set of validated numerical integration methods based on explicit and implicit Runge-Kutta schemes is presented to solve, in a guaranteed way, initial value problems of ordinary differential equations. Runge-Kutta methods are well-known to have strong stability properties, which make them appealing to be the basis of validated numerical integration methods. A new approach to bound the local tr...
متن کاملFrom semidiscrete to fully discrete: stability of Runge-Kutta schemes by the energy method. II
We study the stability of Runge-Kutta methods for the time integration of semidiscrete systems associated with time dependent PDEs. These semidiscrete systems amount to large systems of ODEs with the possibility that the matrices involved are far from being normal. The stability question of their Runge-Kutta methods, therefore, cannot be addressed by the familiar scalar arguments of eigenvalues...
متن کاملRunge-Kutta methods and renormalization
A connection between the algebra of rooted trees used in renormalization theory and Runge-Kutta methods is pointed out. Butcher’s group and B-series are shown to provide a suitable framework for renormalizing a toy model of field theory, following Kreimer’s approach. Finally B-series are used to solve a class of non-linear partial differential equations.
متن کامل