Salicylic Acid Reduces OmpF Expression, Rendering Salmonella enterica Serovar Typhimurium More Resistant to Cephalosporin Antibiotics

نویسندگان

  • Kyung Min Choi
  • Mi Hyun Kim
  • Hua Cai
  • Yong Jin Lee
  • Yeongjin Hong
  • Phil Youl Ryu
چکیده

Salmonella enterica serovar Typhimurium is one of the most important bacterial pathogens causing diarrhea. The resistance of S. typhimurium to antimicrobial agents, which has recently been isolated from patients, is causing serious problems. We investigated the effects of salicylic acid (Sal) and acetyl salicylate (AcSal) on the susceptibility of S. typhimurium to cephalosporin antibiotics, which are known to increase resistance to cephalosporin and quinolone antibiotics. The MIC of cephalosporin antibiotics was higher than that of the media without Sal. The rate of accumulation of ethidium bromide (EtBr) in the bacteria by the outer membrane protein (Omp) was not different from that of the bacteria cultured in the medium containing Sal. However, Carbonyl cyanide-m-chlorophenylhydrazone (CCCP), an inhibitor of bacterial efflux pumps, significantly reduced the rate of accumulation of EtBr in bacteria cultured on Sal containing medium. In the medium containing CCCP, the MIC of the antimicrobial agent tended to decrease as compared with the control. In addition, the MIC of the bacteria treated with CCCP and Sal was higher than that of the antimicrobial agent against the CCCP treated experimental bacteria. These results suggest that Sal decreases the expression of OmpF in the Omp of S. typhimurium and reduces the permeability of cephalosporin antibiotics to bacteria, which may induce tolerance to cephalosporin antibiotics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals

Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using m...

متن کامل

Multiple antibiotic resistance (mar) locus in Salmonella enterica serovar typhimurium DT104.

In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive Salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfectants, and various g...

متن کامل

Identification of specific gene sequences conserved in contemporary epidemic strains of Salmonella enterica.

Genetic elements specific to recent and contemporary epidemic strains of Salmonella enterica were identified using comparative genomic analysis. Two epidemic multidrug-resistant (MDR) strains, MDR Salmonella enterica serovar Typhimurium definitive phage type 104 (DT104) and cephalosporin-resistant MDR Salmonella enterica serovar Newport, and an epidemic pansusceptible strain, Salmonella serovar...

متن کامل

Complete Genome Sequence of Salmonella enterica Serovar Typhimurium Myophage Mushroom

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a leading cause of foodborne illness worldwide. Over the past two decades, strains resistant to antibiotics have begun to emerge, highlighting the need for alternative treatment strategies such as bacteriophage therapy. Here, we present the complete genome of Mushroom, an S. Typhimurium myophage.

متن کامل

Regulation of the Two-Component Regulator CpxR on Aminoglycosides and β-lactams Resistance in Salmonella enterica serovar Typhimurium

The two-component signal transduction system CpxAR is especially widespread in Gram-negative bacteria. It has been reported that CpxAR contributes to the multidrug resistance (MDR) in Escherichia coli. CpxR is a response regulator in the two-component CpxAR system. The aim of this study was to explore the role of cpxR in the MDR of S. enterica serovar Typhimurium. The minimal inhibitory concent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2018