Low temperature internal friction of diamond-like carbon films

نویسندگان

  • Xiao Liu
  • J. A. Bucaro
  • J. F. Vignola
  • B. H. Houston
  • D. B. Chrisey
چکیده

We have studied the internal friction of amorphous diamond-like carbon films prepared by pulsed-laser deposition from 0.4 to 300K. The low temperature internal friction below 10K is dominated by the atomic tunnelling states for amorphous solids, which is a measure of structure disorder. We have tried to vary the content of sp carbon atoms versus sp ones by changing laser fleunce, by doping with N and Ar, and by annnealing at 500◦C for 20 minutes. Our results show that the internal friction varies about one order of magnitude from 2×10−5 to 2×10−4, and its value is higher with higher sp content when the film quality is generally considered superior. However, it is known that as-deposited diamond-like carbon films with high sp content are heavily stressed. Annealing and doping are used to release the stress. We conclude that in addition to tetrahedral bonding, low stress is also important in reducing struture disorder associated with the low energy tunnelling states in amorphous solids.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cryogenic vacuum tribology of diamond and diamond-like carbon films

Friction measurements have been performed on microcrystalline, ultrananocrystalline, and diamond-like carbon DLC films with natural diamond counterfaces in the temperature range of 8 K to room temperature. All films exhibit low friction 0.1 in air at room temperature. In ultrahigh vacuum, microcrystalline diamond quickly wears into a high friction state 0.6 , which is independent of temperature...

متن کامل

Friction Durability of Extremely Thin Diamond-Like Carbon Films at High Temperature

To clarify the friction durability, both during and after the high-temperature heating of nanometer-thick diamond-like carbon (DLC) films, deposited using filtered cathodic vacuum arc (FCVA) and plasma chemical vapor deposition (P-CVD) methods, the dependence of the friction coefficient on the load and sliding cycles of the DLC films, were evaluated. Cluster-I consisted of a low friction area i...

متن کامل

Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS), require thin films with high mechanical strength, chemical inertness, broad optical trans...

متن کامل

Structural and Mechanical Properties of Diamond-like Carbon Films Prepared by Pulsed Laser Deposition with Varying Laser Intensity

Diamond-like carbon (DLC) films have been prepared by pulsed laser deposition (PLD) (wavelength 248 nm), ablating highly oriented pyrolytic graphite (HOPG) at room temperature in a vacuum of 10.2 Pa, at fluences between 0.5 and 35 Jcm. Films have been deposited on Si(100) with and without a SiC interlayer. Structural analysis, such as visible and UV Raman, Infrared and Electron Energy Loss (EEL...

متن کامل

Environmental Performance Limits of Ultrananocrystalline Diamond Films

Recent improvements in growth methodologies have decreased the grain sizes and thicknesses of polycrystalline diamond films to the nanometer range, while also increasing the film uniformity and growth rate and preserving the outstanding mechanical properties of diamond. This is rendering such films more technologically and commercially viable. Ultrananocrystalline diamond (UNCD) are the thinnes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006