Ricci solitons in contact metric manifolds
نویسنده
چکیده
In N(k)-contact metric manifolds and/or (k, μ)-manifolds, gradient Ricci solitons, compact Ricci solitons and Ricci solitons with V pointwise collinear with the structure vector field ξ are studied. Mathematics Subject Classification: 53C15, 53C25, 53A30.
منابع مشابه
On three-dimensional $N(k)$-paracontact metric manifolds and Ricci solitons
The aim of this paper is to characterize $3$-dimensional $N(k)$-paracontact metric manifolds satisfying certain curvature conditions. We prove that a $3$-dimensional $N(k)$-paracontact metric manifold $M$ admits a Ricci soliton whose potential vector field is the Reeb vector field $xi$ if and only if the manifold is a paraSasaki-Einstein manifold. Several consequences of this result are discuss...
متن کاملRicci Solitons in Lorentzian Α-sasakian Manifolds
We study Ricci solitons in Lorentzian α-Sasakian manifolds. It is shown that a symmetric parallel second order covariant tensor in a Lorentzian α-Sasakian manifold is a constant multiple of the metric tensor. Using this it is shown that if LV g + 2S is parallel, V is a given vector field then (g, V ) is Ricci soliton. Further, by virtue of this result Ricci solitons for (2n + 1)-dimensional Lor...
متن کاملGradient Kähler-Ricci Solitons and Periodic Orbits
We study Hamiltonian dynamics of gradient Kähler-Ricci solitons that arise as limits of dilations of singularities of the Ricci flow on compact Kähler manifolds. Our main result is that the underlying spaces of such gradient solitons must be Stein manifolds. Moreover, on all most all energy surfaces of the potential function f of such a soliton, the Hamiltonian vector field Vf of f , with respe...
متن کاملPseudosymmetric and Weyl-pseudosymmetric (κ, Μ)-contact Metric Manifolds
In this paper we classify pseudosymmetric and Ricci-pseudosymmetric (κ, μ)-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric (κ, μ)-contact metric manifolds.
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کامل