Inner product computation for sparse iterative solvers on distributed supercomputer
نویسندگان
چکیده
Recent years have witnessed that iterative Krylov methods without re-designing are not suitable for distribute supercomputers because of intensive global communications. It is well accepted that re-engineering Krylov methods for prescribed computer architecture is necessary and important to achieve higher performance and scalability. The paper focuses on simple and practical ways to re-organize Krylov methods and improve their performance for current heterogeneous distributed supercomputers. In construct with most of current software development of Krylov methods which usually focuses on efficient matrix vector multiplications, the paper focuses on the way to compute inner products on supercomputers and explains why inner product computation on current heterogeneous distributed supercomputers is crucial for scalable Krylov methods. Communication complexity analysis shows that how the inner product computation can be the bottleneck of performance of (inner) product-type iterative solvers on distributed supercomputers due to global communications. Principles of reducing such global communications are discussed. The importance of minimizing communications is demonstrated by experiments using up to 900 processors. The experiments were carried on a Dawning 5000A, one of the fastest and earliest heterogeneous supercomputers in the world. Both the analysis and experiments indicates that inner product computation is very likely to be the most challenging kernel for inner product-based iterative solvers to achieve exascale.
منابع مشابه
Iterative and Direct Sparse Solvers on Parallel Computers
Solving large sparse systems of linear equations is required for a wide range of numerical applications. This paper addresses the main issues raised during the parallelization of iterative and direct solvers for such systems in distributed memory multiprocessors. If no preconditioning is considered, iterative solvers are simple to parallelize, as the most time-consuming computational structures...
متن کاملMinimizing synchronizations in sparse iterative solvers for distributed supercomputers
Eliminating synchronizations is one of the important techniques related to minimizing communications for modern high performance computing. This paper discusses principles of reducing communications due to global synchronizations in sparse iterative solvers on distributed supercomputers. We demonstrates how to minimizing global synchronizations by rescheduling a typical Krylov subspace method. ...
متن کاملHierarchical Krylov and nested Krylov methods for extreme-scale computing
The solution of large, sparse linear systems is often a dominant phase of computation for simulations based on partial differential equations, which are ubiquitous in scientific and engineering applications. While preconditioned Krylov methods are widely used and offer many advantages for solving sparse linear systems that do not have highly convergent, geometric multigrid solvers or specialize...
متن کاملA survey of sparse matrix-vector multiplication performance on large matrices
One of the main sources of sparse matrices is the discretization of partial differential equations that govern continuumphysics phenomena such as fluid flow and transport, phase separation, mechanical deformation, electromagnetic wave propagation, and others. Recent advances in high-performance computing area have been enabling researchers to tackle increasingly larger problems leading to spars...
متن کاملFactorization-based Sparse Solvers and Preconditioners
Efficient solution of large-scale, ill-conditioned and highly-indefinite algebraic equations often relies on high quality preconditioners together with iterative solvers. Because of their robustness, factorizationbased algorithms play a significant role in developing scalable solvers. We discuss the state-of-the-art, high performance sparse factorization techniques which are used to build spars...
متن کامل