Crystal structures of the vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger system.

نویسندگان

  • Ludovic R Otterbein
  • Christophe Cosio
  • Philip Graceffa
  • Roberto Dominguez
چکیده

Actin is the most abundant protein in eukaryotic cells, but its release from cells into blood vessels can be lethal, being associated with clinical situations including hepatic necrosis and septic shock. A homeostatic mechanism, termed the actin-scavenger system, is responsible for the depolymerization and removal of actin from the circulation. During the first phase of this mechanism, gelsolin severs the actin filaments. In the second phase, the vitamin D-binding protein (DBP) traps the actin monomers, which accelerates their clearance. We have determined the crystal structures of DBP by itself and complexed with actin to 2.1 A resolution. Similar to its homologue serum albumin, DBP consists of three related domains. Yet, in DBP a strikingly different organization of the domains gives rise to a large actin-binding cavity. After complex formation the three domains of DBP move slightly to "clamp" onto actin subdomain 3 and to a lesser extent subdomain 1. Contacts between actin and DBP throughout their extensive 3,454-A(2) intermolecular interface involve a mixture of hydrophobic, electrostatic, and solvent-mediated interactions. The area of actin covered by DBP within the complex approximately equals the sum of those covered by gelsolin and profilin. Moreover, certain interactions of DBP with actin mirror those observed in the actin-gelsolin complex, which may explain how DBP can compete effectively with gelsolin for actin binding. Formation of the strong actin-DBP complex proceeds with limited conformational changes to both proteins, demonstrating how DBP has evolved to become an effective actin-scavenger protein.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and characterization of polyclonal antibody against a synthetic peptide from β-actin protein

Objective(s):Antibodies against actin, as one of the most widely studied structural and multifunctional housekeeping proteins in eukaryotic cells, are used as internal loading controls in western blot analyses. The aim of this study was to produce polyclonal antibody against a synthetic peptide derived from N-terminal region of β-actin protein to be used as a protein loading control in western ...

متن کامل

Angiopathic consequences of saturating the plasma scavenger system for actin.

Two plasma proteins, vitamin D-binding protein (actin monomer sequestrant) and gelsolin (actin polymer severing), have been found in association with actin in plasma from ill humans and during experimental injury. In vitro, these are the only plasma proteins that display a high affinity for actin. We infused increasing amounts of globular actin intravenously to rats to evaluate its disposition ...

متن کامل

Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL

Serum response factor transcriptional activity is controlled through interactions with regulatory cofactors such as the coactivator MAL/MRTF-A (myocardin-related transcription factor A). MAL is itself regulated in vivo by changes in cellular actin dynamics, which alter its interaction with G-actin. The G-actin-sensing mechanism of MAL/MRTF-A resides in its N-terminal domain, which consists of t...

متن کامل

Vitamin D binding protein sequesters monomeric actin in the circulation of the rat.

Plasma vitamin D binding protein (DBP) may scavenge actin released during cell lysis. We examined the plasma disappearance and tissue appearance of 125I-DBP, 125I-G-actin, and the DBP-G-actin complex after their intravenous administration to rats. The plasma disappearance of DBP and DBP-actin were indistinguishable, with rapid initial (t1/2 = 2.6 h) and slower second (t1/2 = 7 h) slopes. After ...

متن کامل

Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks

Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 12  شماره 

صفحات  -

تاریخ انتشار 2002