Reversed North Atlantic gyre dynamics in present and glacial climates

نویسندگان

  • Marisa Montoya
  • Andreas Born
  • Anders Levermann
چکیده

The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland–Scotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characteristics and climate impacts of sea ice in the glacial North Atlantic

North Atlantic sea ice displacements are thought to play an important role in the abrupt Dansgaard-Oeschger (D-O) cycles of the last glacial period. This model study investigates sea ice variability in glacial climates to help provide constraints on its involvement in D-O cycles. Sea ice variability in a coupled climate model simulation of the Last Glacial Maximum (21 ka) is concentrated in the...

متن کامل

Surface wind-stress threshold for glacial Atlantic overturning

[1] Using a coupled model of intermediate complexity the sensitivity of the last glacial maximum (LGM) Atlantic meridional overturning circulation (AMOC) to the strength of surface wind-stress is investigated. A threshold is found below which North Atlantic deep water formation (DWF) takes place south of Greenland and the AMOC is relatively weak. Above this threshold, DWF occurs north of the Gr...

متن کامل

The Dynamics of the North Atlantic Subpolar Gyre Introduces Predictability to the Breeding Success of Kittiwakes

Since the open-ocean subpolar Atlantic is amongst the most predictable regions in the world, our results hold promise for predicting the general production to seabird populations over a large geographical region adjacent to the northern North Atlantic and the Arctic Mediterranean. Colonies of black-legged kittiwakes Rissa tridactyla in the North Atlantic have declined markedly since the mid-199...

متن کامل

Can North Atlantic Sea Ice Anomalies Account for Dansgaard–Oeschger Climate Signals?*

North Atlantic sea ice anomalies are thought to play an important role in the abrupt Dansgaard–Oeschger (D–O) cycles of the last glacial period. This model study investigates the impacts of changes in North Atlantic sea ice extent in glacial climates to help provide geographical constraints on their involvement in D–O cycles. Based on a coupled climate model simulation of the Last Glacial Maxim...

متن کامل

Climatic impacts of fresh water hosing under Last Glacial Maximum conditions: a multi-model study

Fresh water hosing simulations, in which a fresh water flux is imposed in the North Atlantic to force fluctuations of the Atlantic Meridional Overturning Circulation, have been routinely performed, first to study the climatic signature of different states of this circulation, then, under present or future conditions, to investigate the potential impact of a partial melting of the Greenland ice ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011