Machine Learning Techniques for Supporting Renewable Energy Generation and Integration: A Survey

نویسندگان

  • Kasun S. Perera
  • Zeyar Aung
  • Wei Lee Woon
چکیده

The extraction of energy from renewable sources is rapidly growing. The current pace of technological development makes it commercially viable to harness energy from sun, wind, geothermal and many other renewable sources. Because of the negative effects on the environment and the economy, conventional energy sources like natural gas, crude oil and coal are coming under political and economic pressure. Thus, they require a better mix of energy sources with a higher percentage of renewable energy sources. Harnessing energy from renewable sources range from small scale (e.g., a single household) to large scale (e.g., power plants producing several MWs to a few GWs providing energy to an entire city). An inherent characteristic common to all renewable power plants is that power generation is dependent on environmental parameters and thus cannot be fully controlled or planned for in advance. In a power grid, it is necessary to predict the amount of power that will be generated in the future, including those from the renewable sources, as fluctuations in capacity and/or quality can have negative impacts on the physical health of the entire grid as well as the quality of life of its users. As renewable power plants continue to expand, it will also be necessary to determine their optimal sizes, locations and configurations. In addition, management of the smart grid, in which the renewable energy plants are integrated, is also a challenging problem. In this paper we provide a survey on different machine learning techniques used to address the above issues related to renewable energy generation and integration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Dynamic Thermal Rating and Energy Storage Systems Technologies Simultaneously for Optimal Integration and Utilization of Renewable Energy Sources

Nowadays, optimal integration and utilization of renewable energy sources (RES) are of the most challenging issues in power systems. The wind and solar generation units' maximum production may or may not occur at peak consumption times resulting in non-optimal utilization of these resources. As a solution to this problem, energy storage systems (ESS) are embedded in networks. However, the power...

متن کامل

Using Reinforcement Learning to Make Smart Energy Storage Source in Microgrid

The use of renewable energy in power generation and sudden changes in load and fault in power transmission lines  may cause a voltage drop in the system and challenge the reliability of the system. One way to compensate the changing nature of renewable energies in the short term without the need to disconnect loads or turn on other plants, is the use of renewable energy storage. The use of ener...

متن کامل

Optimal Scheduling of Coordinated Wind-Pumped Storage-Thermal System Considering Environmental Emission Based on GA Based Heuristic Optimization Algorithm

The integration of renewable wind and pumped storage with thermal power generation allows for dispatch of wind energy by generation companies (GENCOs) interested in participation in energy and ancillary services markets. However, to realize the maximum economic profit, optimal coordination and accounting for reduction in cost for environmental emission is necessary. The goal of this study is to...

متن کامل

Cost-Benefit Investigation of Offshore Wind Power Generation for Soroush Offshore Complex

Iranian offshore oil and gas platforms are mostly located in the Persian Gulf. Technical and environmental challenges resulted from an off-design running condition of processes on a platform are important issues. The weakness of strategies to stop or decrease the amount of greenhouse gas emission production rate in the Persian Gulf; which is intensively increasing, is another matter of concern....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014