Lectures 11–12 - One Way Permutations, Goldreich Levin Theorem, Commitments

نویسندگان

  • Boaz Barak
  • Leonid Levin
چکیده

Proof: Just pick g at random. For every particular 2 √ n-time algorithm A, the expected number of inputs on which A(x) = g(x) is one, and the probability that A computes g successfully on an at least 2−n/10 fraction of the total 2n inputs can be shown to be less than 2−2 −n/2 . But a 2 √ n algorithm can be described by about 2 √ n 2n/2 bits and so the total number of such algorithms is much smaller than 22 n/2 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cs 355 Notes

1. Pseudorandomness and the Blum-Micali generator: 4/1/14 1 2. Proof of Security of the Blum-Micali Generator: 4/3/14 4 3. The Goldreich-Levin Theorem: 4/8/14 6 4. Commitments: 4/10/14 9 5. Commitments II: 4/17/14 12 6. Oblivious Transfer: 4/22/14 14 7. Oblivious Transfer II: 4/24/14 16 8. Zero-Knowledge Proofs: 4/29/14 18 10. Zero-Knowledge Proofs III: 5/6/14 21 11. Zero-Knowledge Proofs IV: 5...

متن کامل

On Constructing 1-1 One-Way Functions

We show how to construct length-preserving 1-1 one-way functions based on popular intractability assumptions (e.g., RSA, DLP). Such 1-1 functions should not be confused with (infinite) families of (finite) one-way permutations. What we want and obtain is a single (infinite) 1-1 one-way function.

متن کامل

Notes for Lecture 12

Today we prove the Goldreich-Levin theorem.

متن کامل

Goldreich-Levin Theorem, Hardcore Predicates and Probabilistic Public-Key Encryption

Error Correcting Codes and Hardcore Predicates Error correcting codes (ECC) play an important role in both complexity theory and cryptography. For our purposes let an ECC be a mapping C : {0, 1} → {0, 1} (more generally the source and target alphabets can be arbitrary finite sets), such that if a string y which is close to a valid encoding C(x) is given, then it is possible to reconstruct the m...

متن کامل

A Quantum Goldreich-Levin Theorem with Cryptographic Applications

We investigate the Goldreich-Levin Theorem in the context of quantum information. This result is a reduction from the computational problem of inverting a one-way function to the problem of predicting a particular bit associated with that function. We show that the quantum version of the reduction—between quantum one-way functions and quantum hard-predicates—is quantitatively more efficient tha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010