Dirichlet Bayesian Network Scores and the Maximum Entropy Principle

نویسنده

  • Marco Scutari
چکیده

A classic approach for learning Bayesian networks from data is to select the maximum a posteriori (MAP) network. In the case of discrete Bayesian networks, the MAP network is selected by maximising one of several possible Bayesian Dirichlet (BD) scores; the most famous is the Bayesian Dirichlet equivalent uniform (BDeu) score from Heckerman et al. (1995). The key properties of BDeu arise from its underlying uniform prior, which makes structure learning computationally efficient; does not require the elicitation of prior knowledge from experts; and satisfies score equivalence. In this paper we will discuss the impact of this uniform prior on structure learning from an information theoretic perspective, showing how BDeu may violate the maximum entropy principle when applied to sparse data and how it may also be problematic from a Bayesian model selection perspective. On the other hand, the BDs score proposed in Scutari (2016) arises from a piecewise prior and it does not appear to violate the maximum entropy principle, even though it is asymptotically equivalent to BDeu.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determination of Maximum Bayesian Entropy Probability Distribution

In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.

متن کامل

Credal Networks under Maximum Entropy

We apply the principle of maximum entropy to select a unique joint probability distribution from the set of all joint probability distributions specified by a credal network. In detail, we start by showing that the unique joint distribution of a Bayesian tree coincides with the maximum entropy model of its conditional distributions. This result, however, does not hold anymore for general Bayesi...

متن کامل

Generalized entropies through Bayesian estimation

The demand made upon computational analysis of observed symbolic sequences has been increasing in the last decade. Here, the concept of entropy receives applications, and the generalizations according to Tsallis H (T) q and R enyi H (R) q provide whole-spectra of entropies characterized by an order q. An enduring practical problem lies in the estimation of these entropies from observed data. Th...

متن کامل

On an Objective Basis for the Maximum Entropy Principle

In this letter, we elaborate on some of the issues raised by a recent paper by Neapolitan and Jiang concerning the maximum entropy (ME) principle and alternative principles for estimating probabilities consistent with known, measured constraint information. We argue that the ME solution for the “problematic” example introduced by Neapolitan and Jiang has stronger objective basis, rooted in resu...

متن کامل

Two Bayesian Treatments of the N-tuple Recognition Method Two Bayesian Treatments of the N-tuple Recognition Method

Two probabilistic interpretations of the n-tuple recognition method are put forward in order to allow this technique to be analysed with the same Bayesian methods used in connection with other neural network models. Elementary demonstrations are then given of the use of maximum likelihood and maximum entropy methods for tuning the model parameters and assisting their interpretation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017